124K
Downloads
157
Episodes
If you’re a leader tasked with generating business and org. value through ML/AI and analytics, you’ve probably struggled with low user adoption. Making the tech gets easier, but getting users to use, and buyers to buy, remains difficult—but you’ve heard a ”data product” approach can help. Can it? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I offer you a consulting designer’s perspective on why creating ML and analytics outputs isn’t enough to create business and UX outcomes. How can UX design and product management help you create innovative ML/AI and analytical data products? What exactly are data products—and how can data product management help you increase user adoption of ML/analytics—so that stakeholders can finally see the business value of your data? Every 2 weeks, I answer these questions via solo episodes and interviews with innovative chief data officers, data product management leaders, and top UX professionals. Hashtag: #ExperiencingData. PODCAST HOMEPAGE: Get 1-page summaries, text transcripts, and join my Insights mailing list: https://designingforanalytics.com/ed ABOUT THE HOST, BRIAN T. O’NEILL: https://designingforanalytics.com/bio/
Episodes
7 days ago
7 days ago
Jeremy Forman joins us to open up about the hurdles– and successes that come with building data products for pharmaceutical companies. Although he’s new to Pfizer, Jeremy has years of experience leading data teams at organizations like Seagen and the Bill and Melinda Gates Foundation. He currently serves in a more specialized role in Pfizer’s R&D department, building AI and analytical data products for scientists and researchers. .
Jeremy gave us a good luck at his team makeup, and in particular, how his data product analysts and UX designers work with pharmaceutical scientists and domain experts to build data-driven solutions.. We talked a good deal about how and when UX design plays a role in Pfizer’s data products, including a GenAI-based application they recently launched internally.
Highlights/ Skip to:
- (1:26) Jeremy's background in analytics and transition into working for Pfizer
- (2:42) Building an effective AI analytics and data team for pharma R&D
- (5:20) How Pfizer finds data products managers
- (8:03) Jeremy's philosophy behind building data products and how he adapts it to Pfizer
- (12:32) The moment Jeremy heard a Pfizer end-user use product management research language and why it mattered
- (13:55) How Jeremy's technical team members work with UX designers
- (18:00) The challenges that come with producing data products in the medical field
- (23:02) How to justify spending the budget on UX design for data products
- (24:59) The results we've seen having UX design work on AI / GenAI products
- (25:53) What Jeremy learned at the Bill & Melinda Gates Foundation with regards to UX and its impact on him now
- (28:22) Managing the "rough dance" between data science and UX
- (33:22) Breaking down Jeremy's GenAI application demo from CDIOQ
- (36:02) What would Jeremy prioritize right now if his team got additional funding
- (38:48) Advice Jeremy would have given himself 10 years ago
- (40:46) Where you can find more from Jeremy
Quotes from Today’s Episode
- “We have stream-aligned squads focused on specific areas such as regulatory, safety and quality, or oncology research. That’s so we can create functional career pathing and limit context switching and fragmentation. They can become experts in their particular area and build a culture within that small team. It’s difficult to build good [pharma] data products. You need to understand the domain you’re supporting. You can’t take somebody with a financial background and put them in an Omics situation. It just doesn’t work. And we have a lot of the scars, and the failures to prove that.” - Jeremy Forman (4:12)
- “You have to have the product mindset to deliver the value and the promise of AI data analytics. I think small, independent, autonomous, empowered squads with a product leader is the only way that you can iterate fast enough with [pharma data products].” - Jeremy Forman (8:46)
- “The biggest challenge is when we say data products. It means a lot of different things to a lot of different people, and it’s difficult to articulate what a data product is. Is it a view in a database? Is it a table? Is it a query? We’re all talking about it in different terms, and nobody’s actually delivering data products.” - Jeremy Forman (10:53)
- “I think when we’re talking about [data products] there’s some type of data asset that has value to an end-user, versus a report or an algorithm. I think it’s even hard for UX people to really understand how to think about an actual data product. I think it’s hard for people to conceptualize, how do we do design around that? It’s one of the areas I think I’ve seen the biggest challenges, and I think some of the areas we’ve learned the most. If you build a data product, it’s not accurate, and people are getting results that are incomplete… people will abandon it quickly.” - Jeremy Forman (15:56)
- “ I think that UX design and AI development or data science work is a magical partnership, but they often don’t know how to work with each other. That’s been a challenge, but I think investing in that has been critical to us. Even though we’ve had struggles… I think we’ve also done a good job of understanding the [user] experience and impact that we want to have. The prototype we shared [at CDIOQ] is driven by user experience and trying to get information in the hands of the research organization to understand some portfolio types of decisions that have been made in the past. And it’s been really successful.” - Jeremy Forman (24:59)
- “If you’re having technology conversations with your business users, and you’re focused only the technology output, you’re just building reports. [After adopting If we’re having technology conversations with our business users and only focused on the technology output, we’re just building reports. [After we adopted a human-centered design approach], it was talking [with end-users] about outcomes, value, and adoption. Having that resource transformed the conversation, and I felt like our quality went up. I felt like our output went down, but our impact went up. [End-users] loved the tools, and that wasn’t what was happening before… I credit a lot of that to the human-centered design team.” - Jeremy Forman (26:39)
- “When you’re thinking about automation through machine learning or building algorithms for [clinical trial analysis], it becomes a harder dance between data scientists and human-centered design. I think there’s a lack of appreciation and understanding of what UX can do. Human-centered design is an empathy-driven understanding of users’ experience, their work, their workflow, and the challenges they have. I don’t think there’s an appreciation of that skill set.” - Jeremy Forman (29:20)
- “Are people excited about it? Is there value? Are we hearing positive things? Do they want us to continue? That’s really how I’ve been judging success. Is it saving people time, and do they want to continue to use it? They want to continue to invest in it. They want to take their time as end-users, to help with testing, helping to refine it. Those are the indicators. We’re not generating revenue, so what does the adoption look like? Are people excited about it? Are they telling friends? Do they want more? When I hear that the ten people [who were initial users] are happy and that they think it should be rolled out to the whole broader audience, I think that’s a good sign.” - Jeremy Forman (35:19)
Links Referenced
LinkedIn: https://www.linkedin.com/in/jeremy-forman-6b982710/
Tuesday Oct 29, 2024
Tuesday Oct 29, 2024
The relationship between AI and ethics is both developing and delicate. On one hand, the GenAI advancements to date are impressive. On the other, extreme care needs to be taken as this tech continues to quickly become more commonplace in our lives. In today’s episode, Ovetta Sampson and I examine the crossroads ahead for designing AI and GenAI user experiences.
While professionals and the general public are eager to embrace new products, recent breakthroughs, etc.; we still need to have some guard rails in place. If we don’t, data can easily get mishandled, and people could get hurt. Ovetta possesses firsthand experience working on these issues as they sprout up. We look at who should be on a team designing an AI UX, exploring the risks associated with GenAI, ethics, and need to be thinking about going forward.
Highlights/ Skip to:
- (1:48) Ovetta's background and what she brings to Google’s Core ML group
- (6:03) How Ovetta and her team work with data scientists and engineers deep in the stack
- (9:09) How AI is changing the front-end of applications
- (12:46) The type of people you should seek out to design your AI and LLM UXs
- (16:15) Explaining why we’re only at the very start of major GenAI breakthroughs
- (22:34) How GenAI tools will alter the roles and responsibilities of designers, developers, and product teams
- (31:11) The potential harms of carelessly deploying GenAI technology
- (42:09) Defining acceptable levels of risk when using GenAI in real-world applications
- (53:16) Closing thoughts from Ovetta and where you can find her
Quotes from Today’s Episode
- “If artificial intelligence is just another technology, why would we build entire policies and frameworks around it? The reason why we do that is because we realize there are some real thorny ethical issues [surrounding AI]. Who owns that data? Where does it come from? Data is created by people, and all people create data. That’s why companies have strong legal, compliance, and regulatory policies around [AI], how it’s built, and how it engages with people. Think about having a toddler and then training the toddler on everything in the Library of Congress and on the internet. Do you release that toddler into the world without guardrails? Probably not.” - Ovetta Sampson (10:03)
- “[When building a team] you should look for a diverse thinker who focuses on the limitations of this technology- not its capability. You need someone who understands that the end destination of that technology is an engagement with a human being. You need somebody who understands how they engage with machines and digital products. You need that person to be passionate about testing various ways that relationships can evolve. When we go from execution on code to machine learning, we make a shift from [human] agency to a shared-agency relationship. The user and machine both have decision-making power. That’s the paradigm shift that [designers] need to understand. You want somebody who can keep that duality in their head as they’re testing product design.” - Ovetta Sampson (13:45)
- “We’re in for a huge taxonomy change. There are words that mean very specific definitions today. Software engineer. Designer. Technically skilled. Digital. Art. Craft. AI is changing all that. It’s changing what it means to be a software engineer. Machine learning used to be the purview of data scientists only, but with GenAI, all of that is baked in to Gemini. So, now you start at a checkpoint, and you’re like, all right, let’s go make an API, right? So, the skills, the understanding, the knowledge, the taxonomy even, how we talk about these things, how do we talk about the machine who speaks to us talks to us, who could create a podcast out of just voice memos?” - Ovetta Sampson (24:16)
- “We have to be very intentional [when building AI tools], and that’s the kind of folks you want on teams. [Designers] have to go and play scary scenarios. We have to do that. No designer wants to be “Negative Nancy,” but this technology has huge potential to harm. It has harmed. If we don’t have the skill sets to recognize, document, and minimize harm, that needs to be part of our skill set. If we’re not looking out for the humans, then who actually is?” - Ovetta Sampson (32:10)
- “[Research shows] things happen to our brain when we’re exposed to artificial intelligence… there are real human engagement risks that are an opportunity for design. When you’re designing a self-driving car, you can’t just let the person go to sleep unless the car is fully [automated] and every other car on the road is self-driving. If there are humans behind the wheel, you need to have a feedback loop system—something that’s going to happen [in case] the algorithm is wrong. If you don’t have that designed, there’s going to be a large human engagement risk that a car is going to run over somebody who’s [for example] pushing a bike up a hill[...] Why? The car could not calculate the right speed and pace of a person pushing their bike. It had the speed and pace of a person walking, the speed and pace of a person on a bike, but not the two together. Algorithms will be wrong, right?” - Ovetta Sampson (39:42)
- “Model goodness used to be the purview of companies and the data scientists. Think about the first search engines. Their model goodness was [about] 77%. That’s good, right? And then people started seeing photos of apes when [they] typed in ‘black people.’ Companies have to get used to going to their customers in a wide spectrum and asking them when they’re [models or apps are] right and wrong. They can’t take on that burden themselves anymore. Having ethically sourced data input and variables is hard work. If you’re going to use this technology, you need to put into place the governance that needs to be there.” - Ovetta Sampson (44:08)
Tuesday Oct 15, 2024
Tuesday Oct 15, 2024
Sometimes DIY UI/UX design only gets you so far—and you know it’s time for outside help. One thing prospects from SAAS analytics and data-related product companies often ask me is how things are like in the other guy/gal’s backyard. They want to compare their situation to others like them. So, today, I want to share some of the common “themes” I see that usually are the root causes of what leads to a phone call with me.
By the time I am on the phone with most prospects who already have a product in market, they’re usually either having significant problems with 1 or more of the following: sales friction (product value is opaque); low adoption/renewal worries (user apathy), customer complaints about UI/UX being hard to use; velocity (team is doing tons of work, but leader isn’t seeing progress)—and the like.
I’m hoping today’s episode will explain some of the root causes that may lead to these issues — so you can avoid them in your data product building work!
Highlights/ Skip to:
- (10:47) Design != "front-end development" or analyst work
- (12:34) Liking doing UI/UX/viz design work vs. knowing
- (15:04) When a leader sees lots of work being done, but the UX/design isn’t progressing
- (17:31) Your product’s UX needs to convey some magic IP/special sauce…but it isn’t
- (20:25) Understanding the tradeoffs of using libraries, templates, and other solution’s design as a foundation for your own
- (25:28) The sunk cost bias associated with POCs and “we’ll iterate on it”
- (28:31) Relying on UI/UX "customization" to please all customers
- (31:26) The hidden costs of abstraction of system objects, UI components, etc. to make life easier for engineering and technical teams
- (32:32) Believing you’ll know the design is good “when you see it” (and what you don’t know you don’t know)
- (36:43) Believing that because the data science/AI/ML modeling under your solution was, accurate, difficult, and/or expensive makes it automatically worth paying for
Quotes from Today’s Episode
- The challenge is often not knowing what you don’t know about a project. We often end up focusing on building the tech [and rushing it out] so we can get some feedback on it… but product is not about getting it out there so we can get feedback. The goal of doing product well is to produce value, benefits, or outcomes. Learning is important, but that’s not what the objective is. The objective is benefits creation. (5:47)
- When we start doing design on a project that’s not design actionable, we build debt and sometimes can hurt the process of design. If you start designing your product with an entire green space, no direction, and no constraints, the chance of you shipping a good v1 is small. Your product strategy needs to be design-actionable for the team to properly execute against it. (19:19)
- While you don’t need to always start at zero with your UI/UX design, what are the parts of your product or application that do make sense to borrow , “steal” and cheat from? And when does it not? It takes skill to know when you should be breaking the rules or conventions. Shortcuts often don’t produce outsized results—unless you know what a good shortcut looks like. (22:28)
- A proof of concept is not a minimum valuable product. There’s a difference between proving the tech can work and making it into a product that’s so valuable, someone would exchange money for it because it’s so useful to them. Whatever that value is, these are two different things. (26:40)
- Trying to do a little bit for everybody [through excessive customization] can often result in nobody understanding the value or utility of your solution. Customization can hide the fact the team has decided not to make difficult choices. If you’re coming into a crowded space… it’s like’y not going to be a compelling reason to [convince customers to switch to your solution]. Customization can be a tax, not a benefit. (29:26)
- Watch for the sunk cost bias [in product development]. [Buyers] don’t care how the sausage was made. Many don’t understand how the AI stuff works, they probably don’t need to understand how it works. They want the benefits downstream from technology wrapped up in something so invaluable they can’t live without it. Watch out for technically right, effectively wrong. (39:27)
Tuesday Oct 01, 2024
Tuesday Oct 01, 2024
In today’s episode, I’m joined by John Felushko, a product manager at LabStats who impressed me after we recently had a 1x1 call together. John and his team have developed a successful product that helps universities track and optimize their software and hardware usage so schools make smart investments. However, John also shares how culture and value are very tied together—and why their product isn’t a fit for every school, and every country. John shares how important customer relationships are , how his team designs great analytics user experiences, how they do user research, and what he learned making high-end winter sports products that’s relevant to leading a SAAS analytics product. Combined with John’s background in history and the political economy of finance, John paints some very colorful stories about what they’re getting right—and how they’ve course corrected over the years at LabStats.
Highlights/ Skip to:
- (0:46) What is the LabStats product
- (2:59) Orienting analytics around customer value instead of IT/data
- (5:51) "Producer of Persistently Profitable Product Process"
- (11:22) How they make product adjustments based on previous failures
- (15:55) Why a lack of cultural understanding caused LabStats to fail internationally
- (18:43) Quantifying value beyond dollars and cents
- (25:23) How John is able to work so closely with his customers without barriers
- (30:24) Who makes up the LabStats product research team
- (35:04) How strong customer relationships help inform the UX design process
- (38:29) Getting senior management to accept that you can't regularly and accurately predict when you’ll be feature-complete and ship
- (43:51) Where John learned his skills as a successful product manager
- (47:20) Where you can go to cultivate the non-technical skills to help you become a better SAAS analytics product leader
- (51:00) What advice would John Felushko have given himself 10 years ago?
- (56:19) Where you can find more from John Felushko
Quotes from Today’s Episode
- “The product process is [essentially] really nothing more than the scientific method applied to business. Every product is an experiment - it has a hypothesis about a problem it solves. At LabStats [we have a process] where we go out and clearly articulate the problem. We clearly identify who the customers are, and who are [people at other colleges] having that problem. Incrementally and as inexpensively as possible, [we] test our solutions against those specific customers. The success rate [of testing solutions by cross-referencing with other customers] has been extremely high.” - John Felushko (6:46)
- “One of the failures I see in Americans is that we don’t realize how much culture matters. Americans have this bias to believe that whatever is valuable in my culture is valuable in other cultures. Value is entirely culturally determined and subjective. Value isn’t a number on a spreadsheet. [LabStats positioned our producty] as something that helps you save money and be financially efficient. In French government culture, financial efficiency is not a top priority. Spending government money on things like education is seen as a positive good. The more money you can spend on it, the better. So, the whole message of financial efficiency wasn’t going to work in that market.” - John Felushko (16:35)
- “What I’m really selling with data products is confidence. I’m selling assurance. I’m selling an emotion. Before I was a product manager, I spent about ten years in outdoor retail, selling backpacks and boots. What I learned from that is you’re always selling emotion, at every level. If you can articulate the ROI, the real value is that the buyer has confidence they bought the right thing.” - John Felushko (20:29)
- “[LabStats] has three massive, multi-million dollar horror stories in our past where we [spent] millions of dollars in development work for no results. No ROI. Horror stories are what shape people’s values more than anything else. Avoiding negative outcomes is what people avoid more than anything else. [It’s important to] tell those stories and perpetuate those [lessons] through the culture of your organization. These are the times we screwed up, and this is what we learned from it—do you want to screw up like that again because we learned not to do that.” - John Felushko (38:45)
- “There’s an old description of a product manager, like, ‘Oh, they come across as the smartest person in the room.’ Well, how do you become that person? Expand your view, and expand the amount of information you consume as widely as possible. That’s so important to UX design and thinking about what went wrong. Why are some customers super happy and some customers not? What is the difference between those two groups of people? Is it culture? Is it time? Is it mental ability? Is it the size of the screen they’re looking at my product on? What variables can I define and rule out, and what data sources do I have to answer all those questions? It’s just the normal product manager thing—constant curiosity.” -John Felushko (48:04)
Tuesday Sep 17, 2024
Tuesday Sep 17, 2024
In today’s episode, I’m going to perhaps work myself out of some consulting engagements, but hey, that’s ok! True consulting is about service—not PPT decks with strategies and tiers of people attached to rate cards. Specifically today, I decided to reframe a topic and approach it from the opposite/negative side. So, instead of telling you when the right time is to get UX design help for your enterprise SAAS analytics or AI product(s), today I’m going to tell you when you should NOT get help!
Reframing this was really fun and made me think a lot as I recorded the episode. Some of these reasons aren’t necessarily representative of what I believe, but rather what I’ve heard from clients and prospects over 25 years—what they believe. For each of these, I’m also giving a counterargument, so hopefully, you get both sides of the coin.
Finally, analytical thinkers, especially data product managers it seems, often want to quantify all forms of value they produce in hard monetary units—and so in this episode, I’m also going to talk about other forms of value that products can create that are worth paying for—and how mushy things like “feelings” might just come into play ;-) Ready?
Highlights/ Skip to:
- (1:52) Going for short, easy wins
- (4:29) When you think you have good design sense/taste
- (7:09) The impending changes coming with GenAI
- (11:27) Concerns about "dumbing down" or oversimplifying technical analytics solutions that need to be powerful and flexible
- (15:36) Agile and process FTW?
- (18:59) UX design for and with platform products
- (21:14) The risk of involving designers who don’t understand data, analytics, AI, or your complex domain considerations
- (30:09) Designing after the ML models have been trained—and it’s too late to go back
- (34:59) Not tapping professional design help when your user base is small , and you have routine access and exposure to them
- (40:01) Explaining the value of UX design investments to your stakeholders when you don’t 100% control the budget or decisions
Quotes from Today’s Episode
- “It is true that most impactful design often creates more product and engineering work because humans are messy. While there sometimes are these magic, small GUI-type changes that have big impact downstream, the big picture value of UX can be lost if you’re simply assigning low-level GUI improvement tasks and hoping to see a big product win. It always comes back to the game you’re playing inside your team: are you working to produce UX and business outcomes or shipping outputs on time? ” (3:18)
- “If you’re building something that needs to generate revenue, there has to be a sense of trust and belief in the solution. We’ve all seen the challenges of this with LLMs. [when] you’re unable to get it to respond in a way that makes you feel confident that it understood the query to begin with. And then you start to have all these questions about, ‘Is the answer not in there,’ or ‘Am I not prompting it correctly?’ If you think that most of this is just an technical data science problem, then don’t bother to invest in UX design work… ” (9:52)
- “Design is about, at a minimum, making it useful and usable, if not delightful. In order to do that, we need to understand the people that are going to use it. What would an improvement to this person’s life look like? Simplifying and dumbing things down is not always the answer. There are tools and solutions that need to be complex, flexible, and/or provide a lot of power – especially in an enterprise context. Working with a designer who solely insists on simplifying everything at all costs regardless of your stated business outcome goals is a red flag—and a reason not to invest in UX design—at least with them!“ (12:28)“I think what an analytics product manager [or] an AI product manager needs to accept is there are other ways to measure the value of UX design’s contribution to your product and to your organization. Let’s say that you have a mission-critical internal data product, it’s used by the most senior executives in the organization, and you and your team made their day, or their month, or their quarter. You saved their job. You made them feel like a hero. What is the value of giving them that experience and making them feel like those things… What is that worth when a key customer or colleague feels like you have their back with this solution you created? Ideas that spread, win, and if these people are spreading your idea, your product, or your solution… there’s a lot of value in that.” (43:33)
- “Let’s think about value in non-financial terms. Terms like feelings. We buy insurance all the time. We’re spending money on something that most likely will have zero economic value this year because we’re actually trying not to have to file claims. Yet this industry does very well because the feeling of security matters. That feeling is worth something to a lot of people. The value of feeling secure is something greater than whatever the cost of the insurance plan. If your solution can build feelings of confidence and security, what is that worth? Does “hard to measure precisely” necessarily mean “low value?” (47:26)
Tuesday Sep 03, 2024
Tuesday Sep 03, 2024
Due to a technical glitch that ended up unpublishing this episode right after it originally was released, Episode 151 is a replay of my conversation with Zalak Trivdei from this past March . Please enjoy our chat if you missed it the first time around!
Thanks,
Brian
Links
Sigma Computing: https://sigmacomputing.com
Email: zalak@sigmacomputing.com
LinkedIn: https://www.linkedin.com/in/trivedizalak/
Sigma Computing Embedded: https://sigmacomputing.com/embedded
About Promoted Episodes on Experiencing Data: https://designingforanalytics.com/promoted
Thursday Aug 29, 2024
Thursday Aug 29, 2024
“Last week was a great year in GenAI,” jokes Mark Ramsey—and it’s a great philosophy to have as LLM tools especially continue to evolve at such a rapid rate. This week, you’ll get to hear my fun and insightful chat with Mark from Ramsey International about the world of large language models (LLMs) and how we make useful UXs out of them in the enterprise.
Mark shared some fascinating insights about using a company’s website information (data) as a place to pilot a LLM project, avoiding privacy landmines, and how re-ranking of models leads to better LLM response accuracy. We also talked about the importance of real human testing to ensure LLM chatbots and AI tools truly delight users. From amusing anecdotes about the spinning beach ball on macOS to envisioning a future where AI-driven chat interfaces outshine traditional BI tools, this episode is packed with forward-looking ideas and a touch of humor.
Highlights/ Skip to:
- (0:50) Why is the world of GenAI evolving so fast?
- (4:20) How Mark thinks about UX in an LLM application
- (8:11) How Mark defines “Specialized GenAI?”
- (12:42) Mark’s consulting work with GenAI / LLMs these days
- (17:29) How GenAI can help the healthcare industry
- (30:23) Uncovering users’ true feelings about LLM applications
- (35:02) Are UIs moving backwards as models progress forward?
- (40:53) How will GenAI impact data and analytics teams?
- (44:51) Will LLMs be able to consistently leverage RAG and produce proper SQL?
- (51:04) Where can find more from Mark and Ramsey International
Quotes from Today’s Episode
- “With [GenAI], we have a solution that we’ve built to try to help organizations, and build workflows. We have a workflow that we can run and ask the same question [to a variety of GenAI models] and see how similar the answers are. Depending on the complexity of the question, you can see a lot of variability between the models… [and] we can also run the same question against the different versions of the model and see how it’s improved. Folks want a human-like experience interacting with these models.. [and] if the model can start responding in just a few seconds, that gives you much more of a conversational type of experience.” - Mark Ramsey (2:38)
- “[People] don’t understand when you interact [with GenAI tools] and it brings tokens back in that streaming fashion, you’re actually seeing inside the brain of the model. Every token it produces is then displayed on the screen, and it gives you that typewriter experience back in the day. If someone has to wait, and all you’re seeing is a logo spinning, from a UX experience standpoint… people feel like the model is much faster if it just starts to produce those results in that streaming fashion. I think in a design, it’s extremely important to take advantage of that [...] as opposed to waiting to the end and delivering the results some models support that, and other models don’t.”- Mark Ramsey (4:35)
- "All of the data that’s on the website is public information. We’ve done work with several organizations on quickly taking the data that’s on their website, packaging it up into a vector database, and making that be the source for questions that their customers can ask. [Organizations] publish a lot of information on their websites, but people really struggle to get to it. We’ve seen a lot of interest in vectorizing website data, making it available, and having a chat interface for the customer. The customer can ask questions, and it will take them directly to the answer, and then they can use the website as the source information.” - Mark Ramsey (14:04)
- “I’m not skeptical at all. I’ve changed much of my [AI chatbot searches] to Perplexity, and I think it’s doing a pretty fantastic job overall in terms of quality. It’s returning an answer with citations, so you have a sense of where it’s sourcing the information from. I think it’s important from a user experience perspective. This is a replacement for broken search, as I really don’t want to read all the web pages and PDFs you have that *might* be about my chiropractic care query to answer my actual [healthcare] question.” - Brian O’Neill (19:22)
- “We’ve all had great experience with customer service, and we’ve all had situations where the customer service was quite poor, and we’re going to have that same thing as we begin to [release more] chatbots. We need to make sure we try to alleviate having those bad experiences, and have an exit. If someone is running into a situation where they’d rather talk to a live person, have that ability to route them to someone else. That’s why the robustness of the model is extremely important in the implementation… and right now, organizations like OpenAI and Anthropic are significantly better at that [human-like] experience.” - Mark Ramsey (23:46)
- "There’s two aspects of these models: the training aspect and then using the model to answer questions. I recommend to organizations to always augment their content and don’t just use the training data. You’ll still get that human-like experience that’s built into the model, but you’ll eliminate the hallucinations. If you have a model that has been set up correctly, you shouldn’t have to ask questions in a funky way to get answers.” - Mark Ramsey (39:11)
- “People need to understand GenAI is not a predictive algorithm. It is not able to run predictions, it struggles with some math, so that is not the focus for these models. What’s interesting is that you can use the model as a step to get you [the answers]. A lot of the models now support functions… when you ask a question about something that is in a database, it actually uses its knowledge about the schema of the database. It can build the query, run the query to get the data back, and then once it has the data, it can reformat the data into something that is a good response back." - Mark Ramsey (42:02)
Links
- Mark on LinkedIn
- Ramsey International
- Email: mark [at] ramsey.international
- Ramsey International's YouTube Channel
Tuesday Aug 06, 2024
Tuesday Aug 06, 2024
Guess what? Data science and AI initiatives are still failing here in 2024—despite widespread awareness. Is that news? Candidly, you’ll hear me share with Evan Shellshear—author of the new book Why Data Science Projects Fail: The Harsh Realities of Implementing AI and Analytics—about how much I actually didn’t want to talk about this story originally on my podcast—because it’s not news! However, what is news is what the data says behind Evan’s findings—and guess what? It’s not the technology.
In our chat, Evan shares why he wanted to leverage a human approach to understand the root cause of multiple organizations’ failures and how this approach highlighted the disconnect between data scientists and decision-makers. He explains the human factors at play, such as poor problem surfacing and organizational culture challenges—and how these human-centered design skills are rarely taught or offered to data scientists. The conversation delves into why these failures are more prevalent in data science compared to other fields, attributing it to the complexity and scale of data-related problems. We also discuss how analytically mature companies can mitigate these issues through strategic approaches and stakeholder buy-in. Join us as we delve into these critical insights for improving data science project outcomes.
Highlights/ Skip to:
- (4:45) Why are data science projects still failing?
- (9:17) Why is the disconnect between data scientists and decision-makers so pronounced relative to, say, engineering?
- (13:08) Why are data scientists not getting enough training for real-world problems?
- (16:18) What the data says about failure rates for mature data teams vs. immature data teams
- (19:39) How to change people’s opinions so they value data more
- (25:16) What happens at the stage where the beneficiaries of data don’t actually see the benefits?
- (31:09) What are the skills needed to prevent a repeating pattern of creating data products that customers ignore??
- (37:10) Where do more mature organizations find non-technical help to complement their data science and AI teams?
- (41:44) Are executives and directors aware of the skills needed to level up their data science and AI teams?
Quotes from Today’s Episode
- “People know this stuff. It’s not news anymore. And so, the reason why we needed this was really to dig in. And exactly like you did, like, keeping that list of articles is brilliant, and knowing what’s causing the failures and what’s leading to these issues still arising is really important. But at some point, we need to approach this in a scientific fashion, and we need to unpack this, and we need to really delve into the details beyond just the headlines and the articles themselves. And start collating and analyzing this to properly figure out what’s going wrong, and what do we need to do about it to fix it once and for all so you can stop your endless collection, and the AI Incident Database that now has over 3500 entries. It can hang its hat and say, ‘I’ve done my job. It’s time to move on. We’re not failing as we used to.’” - Evan Shellshear (3:01)
- "What we did is we took a number of different studies, and we split companies into what we saw as being analytically mature—and this is a common, well-known thing; there are many maturity frameworks exist across data, across AI, across all different areas—and what we call analytically immature, so those companies that probably aren’t there yet. And what we wanted to draw a distinction is okay, we say 80% of projects fail, or whatever the exact number is, but for who? And for what stage and for what capability? And so, what we then went and did is we were able to take our data and look at which failures are common for analytically immature organizations, and which failures are common for analytically mature organizations, and then we’re able to understand, okay, in the market, how many organizations do we think are analytically mature versus analytically immature, and then we were able to take that 80% failure rate and establish it. For analytically mature companies, the failure rate is probably more like 40%. For analytically immature companies, it’s over 90%, right? And so, you’re exactly right: organizations can do something about it, and they can build capabilities in to mitigate this. So definitely, it can be reduced. Definitely, it can be brought down. You might say, 40% is still too high, but it proves that by bringing in these procedures, you’re completely correct, that it can be reduced.” - Evan Shellshear (14:28)
- "What happens with the data science person, however, is typically they’re seen as a cost center—typically, not always; nowadays, that dialog is changing—and what they need to do is find partners across the other parts of the business. So, they’re going to go into the supply chain team, they’ll go into the merchandising team, they’ll go into the banking team, they’ll go into the other teams, and they’re going to find their supporters and winners there, and they’re going to probably build out from there. So, the first step would likely be, if you’re a big enough organization that you’re not having that strategy the executive level is to find your friends—and there will be some of the organization who support this data strategy—and get some wins for them.” - Evan Shellshear (24:38)
- “It’s not like there’s this box you put one in the other in. Because, like success and failure, there’s a continuum. And companies as they move along that continuum, just like you said, this year, we failed on the lack of executive buy-in, so let’s fix that problem. Next year, we fail on not having the right resources, so we fix that problem. And you move along that continuum, and you build it up. And at some point as you’re going on, that failure rate is dropping, and you’re getting towards that end of the scale where you’ve got those really capable companies that live, eat, and breathe data science and analytics, and so have to have these to be able to survive, otherwise a simple company evolution would have wiped them out, and they wouldn’t exist if they didn’t have that capability, if that’s their core thing.” - Evan Shellshear (18:56)
- “Nothing else could be correct, right? This subjective intuition and all this stuff, it’s never going to be as good as the data. And so, what happens is, is you, often as a data scientist—and I’ve been subjected to this myself—come in with this arrogance, this kind of data-driven arrogance, right? And it’s not a good thing. It puts up barriers, it creates issues, it separates you from the people.” - Evan Shellshear (27:38)
- "Knowing that you’re going to have to go on that journey from day one, you can’t jump from level zero to level five. That’s what all these data maturity models are about, right? You can’t jump from level zero data maturity to level five overnight. You really need to take those steps and build it up.” - Evan Shellshear (45:21)
- "What we’re talking about, it’s not new. It’s just old wine in a new skin, and we’re just presenting it for the data science age." - Evan Shellshear (48:15)
Links
- Why Data Science Projects Fail: The Harsh Realities of Implementing AI and Analytics, without the Hype: https://www.routledge.com/Why-Data-Science-Projects-Fail-the-Harsh-Realities-of-Implementing-AI-and-Analytics-without-the-Hype/Gray-Shellshear/p/book/9781032660301
- LinkedIn: https://www.linkedin.com/in/eshellshear/
- Get the Book:
- Why do we still teach people to calculate? (People I Mostly Admire podcast)
Tuesday Jul 23, 2024
148 - UI/UX Design Considerations for LLMs in Enterprise Applications (Part 2)
Tuesday Jul 23, 2024
Tuesday Jul 23, 2024
Ready for more ideas about UX for AI and LLM applications in enterprise environments? In part 2 of my topic on UX considerations for LLMs, I explore how an LLM might be used for a fictitious use case at an insurance company—specifically, to help internal tools teams to get rapid access to primary qualitative user research. (Yes, it’s a little “meta”, and I’m also trying to nudge you with this hypothetical example—no secret!) ;-) My goal with these episodes is to share questions you might want to ask yourself such that any use of an LLM is actually contributing to a positive UX outcome Join me as I cover the implications for design, the importance of foundational data quality, the balance between creative inspiration and factual accuracy, and the never-ending discussion of how we might handle hallucinations and errors posing as “facts”—all with a UX angle. At the end, I also share a personal story where I used an LLM to help me do some shopping for my favorite product: TRIP INSURANCE! (NOT!)
Highlights/ Skip to:
- (1:05) I introduce a hypothetical internal LLM tool and what the goal of the tool is for the team who would use it
- (5:31) Improving access to primary research findings for better UX
- (10:19) What “quality data” means in a UX context
- (12:18) When LLM accuracy maybe doesn’t matter as much
- (14:03) How AI and LLMs are opening the door for fresh visioning work
- (15:38) Brian’s overall take on LLMs inside enterprise software as of right now
- (18:56) Final thoughts on UX design for LLMs, particularly in the enterprise
- (20:25) My inspiration for these 2 episodes—and how I had to use ChatGPT to help me complete a purchase on a website that could have integrated this capability right into their website
Quotes from Today’s Episode
- “If we accept that the goal of most product and user experience research is to accelerate the production of quality services, products, and experiences, the question is whether or not using an LLM for these types of questions is moving the needle in that direction at all. And secondly, are the potential downsides like hallucinations and occasional fabricated findings, is that all worth it? So, this is a design for AI problem.” - Brian T. O’Neill (8:09)
- “What’s in our data? Can the right people change it when the LLM is wrong? The data product managers and AI leaders reading this or listening know that the not-so-secret path to the best AI is in the foundational data that the models are trained on. But what does the word *quality* mean from a product standpoint and a risk reduction one, as seen from an end-users’ perspective? Somebody who’s trying to get work done? This is a different type of quality measurement.” - Brian T. O’Neill (10:40)
- “When we think about fact retrieval use cases in particular, how easily can product teams—internal or otherwise—and end-users understand the confidence of responses? When responses are wrong, how easily, if at all, can users and product teams update the model’s responses? Errors in large language models may be a significant design consideration when we design probabilistic solutions, and we no longer control what exactly our products and software are going to show to users. If bad UX can include leading people down the wrong path unknowingly, then AI is kind of like the team on the other side of the tug of war that we’re playing.” - Brian T. O’Neill (11:22)
- “As somebody who writes a lot for my consulting business, and composes music in another, one of the hardest parts for creators can be the zero-to-one problem of getting started—the blank page—and this is a place where I think LLMs have great potential. But it also means we need to do the proper research to understand our audience, and when or where they’re doing truly generative or creative work—such that we can take a generative UX to the next level that goes beyond delivering banal and obviously derivative content.” - Brian T. O’Neill (13:31)
- “One thing I actually like about the hype, investment, and excitement around GenAI and LLMs in the enterprise is that there is an opportunity for organizations here to do some fresh visioning work. And this is a place that designers and user experience professionals can help data teams as we bring design into the AI space.” - Brian T. O’Neill (14:04)
- “If there was ever a time to do some new visioning work, I think now is one of those times. However, we need highly skilled design leaders to help facilitate this in order for this to be effective. Part of that skill is knowing who to include in exercises like this, and my perspective, one of those people, for sure, should be somebody who understands the data science side as well, not just the engineering perspective. And as I posited in my seminar that I teach, the AI and analytical data product teams probably need a fourth member. It’s a quartet and not a trio. And that quartet includes a data expert, as well as that engineering lead.” - Brian T. O’Neill (14:38)
Links
Tuesday Jul 09, 2024
147 - UI/UX Design Considerations for LLMs in Enterprise Applications (Part 1)
Tuesday Jul 09, 2024
Tuesday Jul 09, 2024
Let’s talk about design for AI (which more and more, I’m agreeing means GenAI to those outside the data space). The hype around GenAI and LLMs—particularly as it relates to dropping these in as features into a software application or product—seems to me, at this time, to largely be driven by FOMO rather than real value. In this “part 1” episode, I look at the importance of solid user experience design and outcome-oriented thinking when deploying LLMs into enterprise products. Challenges with immature AI UIs, the role of context, the constant game of understanding what accuracy means (and how much this matters), and the potential impact on human workers are also examined. Through a hypothetical scenario, I illustrate the complexities of using LLMs in practical applications, stressing the need for careful consideration of benchmarks and the acceptance of GenAI's risks.
I also want to note that LLMs are a very immature space in terms of UI/UX design—even if the foundation models continue to mature at a rapid pace. As such, this episode is more about the questions and mindset I would be considering when integrating LLMs into enterprise software more than a suggestion of “best practices.”
Highlights/ Skip to:
- (1:15) Currently, many LLM feature initiatives seem to mostly driven by FOMO
- (2:45) UX Considerations for LLM-enhanced enterprise applications
- (5:14) Challenges with LLM UIs / user interfaces
- (7:24) Measuring improvement in UX outcomes with LLMs
- (10:36) Accuracy in LLMs and its relevance in enterprise software
- (11:28) Illustrating key consideration for implementing an LLM-based feature
- (19:00) Leadership and context in AI deployment
- (19:27) Determining UX benchmarks for using LLMs
- (20:14) The dynamic nature of LLM hallucinations and how we design for the unknown
- (21:16) Closing thoughts on Part 1 of designing for AI and LLMs
Quotes from Today’s Episode
- “While many product teams continue to race to deploy some sort of GenAI and especially LLMs into their products—particularly this is in the tech sector for commercial software companies—the general sense I’m getting is that this is still more about FOMO than anything else.” - Brian T. O’Neill (2:07)
- “No matter what the technology is, a good user experience design foundation starts with not doing any harm, and hopefully going beyond usable to be delightful. And adding LLM capabilities into a solution is really no different. So, we still need to have outcome-oriented thinking on both our product and design teams when deploying LLM capabilities into a solution. This is a cornerstone of good product work.” - Brian T. O’Neill (3:03)
- “So, challenges with LLM UIs and UXs, right, user interfaces and experiences, the most obvious challenge to me right now with large language model interfaces is that while we’ve given users tremendous flexibility in the form of a Google search-like interface, we’ve also in many cases, limited the UX of these interactions to a text conversation with a machine. We’re back to the CLI in some ways.” - Brian T. O’Neill (5:14)
- “Before and after we insert an LLM into a user’s workflow, we need to know what an improvement in their life or work actually means.”- Brian T. O’Neill (7:24)
- "If it would take the machine a few seconds to process a result versus what might take a day for a worker, what’s the role and purpose of that worker going forward? I think these are all considerations that need to be made, particularly if you’re concerned about adoption, which a lot of data product leaders are." - Brian T. O’Neill (10:17)
- “So, there’s no right or wrong answer here. These are all range questions, and they’re leadership questions, and context really matters. They are important to ask, particularly when we have this risk of reacting to incorrect information that looks plausible and believable because of how these LLMs tend to respond to us with a positive sheen much of the time.” - Brian T. O’Neill (19:00)
Links
- View Part 1 of my article on UI/UX design considerations for LLMs in enterprise applications: https://designingforanalytics.com/resources/ui-ux-design-for-enterprise-llms-use-cases-and-considerations-for-data-and-product-leaders-in-2024-part-1/