

130.8K
Downloads
164
Episodes
If you’re a leader tasked with generating business and org. value through ML/AI and analytics, you’ve probably struggled with low user adoption. Making the tech gets easier, but getting users to use, and buyers to buy, remains difficult—but you’ve heard a ”data product” approach can help. Can it? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I offer you a consulting designer’s perspective on why creating ML and analytics outputs isn’t enough to create business and UX outcomes. How can UX design and product management help you create innovative ML/AI and analytical data products? What exactly are data products—and how can data product management help you increase user adoption of ML/analytics—so that stakeholders can finally see the business value of your data? Every 2 weeks, I answer these questions via solo episodes and interviews with innovative chief data officers, data product management leaders, and top UX professionals. Hashtag: #ExperiencingData. PODCAST HOMEPAGE: Get 1-page summaries, text transcripts, and join my Insights mailing list: https://designingforanalytics.com/ed ABOUT THE HOST, BRIAN T. O’NEILL: https://designingforanalytics.com/bio/
Episodes

13 hours ago
13 hours ago
I keep hearing data product, data strategy, and UX teams often struggle to quantify the value of their work. Whether it’s as a team as a whole or on a specific data product initiative, the underlying problem is the same – your contribution is indirect, so it’s harder to measure. Even worse, your stakeholders want to know if your work is creating an impact and value, but because you can’t easily put numbers on it, valuation spirals into a messy problem.
The messy part of this valuation problem is what today’s episode is all about—not math! Value is largely subjective, not objective, and I think this is partly why analytical teams may struggle with this. To improve at how you estimate the value of your data products, you need to leverage other skills—and stop approaching this as a math problem.
As a consulting product designer, estimating value when it’s indirect is something that I’ve dealt with my entire career. It’s not a skill learned overnight, and it’s one you will need to keep developing over time—but the basic concepts are simple. I hope you’ll find some value in applying these along with your other frameworks and tools.
Highlights/ Skip to
- Value is subjective, not objective (5:01)
- Measurability does not necessarily mean valuable (6:36)
- Businesses are made up of humans. Most b2b stakeholders aren’t spending their own money when making business decisions—what does that mean for your work? (9:30)
- Quantifying a data product’s value starts with understanding what is worth measuring in the eye of the beholder(s)—not math calculations (13:44)
- The more difficult it is to show the value of your product (or team) in numbers, the lower that value is to the stakeholder—initially (16:46)
- By simply helping a stakeholder to think through how value should be calculated on a data product, you’re likely already providing additional value (18:02)
- Focus on expressing estimated value via a range versus a single number (19:36)
- Measurement of anything requires that we can observe the phenomenon first—but many stakeholders won’t be able to cite these phenomena without [your!] help (22:16)
- When you are measuring quantitative aspects of value, remember that measurement is not the same as accuracy (precision)—and the precision game can become a trap (25:37)
- How to measure anything—and why estimates often trump accuracy (31:19)
- Why you may need to steer the conversation away from ROI calculations in the short term (35:00)
Quotes from Today’s Episode
- Even when you can easily assign a dollar value to the data product you’re building, that does not necessarily reflect what your stakeholder actually feels about it—or your team’s contribution. So, why do they keep asking you to quantify the value of your work? By actually understanding what a shareholder needs to observe for them to know progress has been made on their initiative or data product, you will be positioned to deliver results they actually care about. While most of the time, you should be able to show some obvious economic value in the work you’re doing, you may be getting hounded about this because you’re not meeting the often unstated qualitative goals. If you can surface the qualitative goals of your stakeholder, then the perception of the value of your team and its work goes up, and you’ll spend less time trying to measure an indirect contribution in quant terms that only has a subjectively right answer. (6:50)
- The more difficult it is for you to show the monetary value of your data product (or team), the lower that value likely is to the stakeholder. This does not mean the value of your work is “low.” It means it’s perceived as low because it cannot be easily quantified in a way that is observable to the person whose judgment matters. By understanding the personal motivations and interests of your stakeholders, you can begin to collaboratively figure out what the correct success metrics should be—and how they’d be measured. By just simply beginning to ask and uncover what they’re trying to measure, you can start to increase your contributions’ perceived value. (17:01)
- Think about expressing “indirect value” as a range, not a precise single value. It’s much easier to refine your estimate (if necessary) once a range has been defined, and you only need to get precise enough for your stakeholder to make a decision with the information. How much time should you spend refining your measurement of the value? Potentially little to none—if the “better math” isn’t going to change anyone’s mind or decision. Spending more time to measure a data product’s value more accurately takes you away from doing actual product work—and if there isn’t much obvious value to the work, maybe the work—not the measurement of the work—needs to change. (19:49)
- Smart leaders know that deriving a simple calculation of indirect contributions is complex—otherwise, the topic wouldn’t keep coming up. There is a “why” behind why they’re asking, and when you understand the “why,” you’ll be better positioned to deliver the value they actually seek, using valuation measurements that are “just enough” in their precision. What do you think it says to a stakeholder if you’re spending an inordinate amount of time simply trying to calculate and explain the value of your data product? (23:22)
- Many organizations for years have invested in things that don’t always have a short term ROI. They know that ROI takes time, and they can’t really measure what it’s worth along the way. Examples include investments in company culture, innovation, brand reputation, and many others. If you’re constantly playing defense and having to justify your existence or methods by quantifying the financial value of your data products (or data product management team, or UX team, or any other indirect contributor/contribution), then either your work truly does lack value, or you haven’t surfaced what the actual success metrics and outcomes are— in the eyes of the stakeholder. As such, the perceived value is “low” or opaque. They might be looking for a hard number to assign to it because they’re not seeing any of the other forms of value that they care about that would indicate positive progress. It’s easier to write [you] a large check for a big, innovative, unproven initiative if your stakeholders know what you and your team can accomplish with a small check. (35:16)
Links

Tuesday Feb 04, 2025
162 - Beyond UI: Designing User Experiences for LLM and GenAI-Based Products
Tuesday Feb 04, 2025
Tuesday Feb 04, 2025
I’m doing things a bit differently for this episode of Experiencing Data. For the first time on the show, I’m hosting a panel discussion. I’m joined by Thomson Reuters’s Simon Landry, Sumo Logic’s Greg Nudelman, and Google’s Paz Perez to chat about how we design user experiences that improve people’s lives and create business impact when we expose LLM capabilities to our users.
With the rise of AI, there are a lot of opportunities for innovation, but there are also many challenges—and frankly, my feeling is that a lot of these capabilities right now are making things worse for users, not better. We’re looking at a range of topics such as the pros and cons of AI-first thinking, collaboration between UX designers and ML engineers, and the necessity of diversifying design teams when integrating AI and LLMs into b2b products.
Highlights/ Skip to
- Thoughts on how the current state of LLMs implementations and its impact on user experience (1:51)
- The problems that can come with the "AI-first" design philosophy (7:58)
- Should a company's design resources be spent on go toward AI development? (17:20)
- How designers can navigate "fuzzy experiences” (21:28)
- Why you need to narrow and clearly define the problems you’re trying to solve when building LLMs products (27:35)
- Why diversity matters in your design and research teams when building LLMs (31:56)
- Where you can find more from Paz, Greg, and Simon (40:43)
Quotes from Today’s Episode
- “ [AI] will connect the dots. It will argue pro, it will argue against, it will create evidence supporting and refuting, so it’s really up to us to kind of drive this. If we understand the capabilities, then it is an almost limitless field of possibility. And these things are taught, and it’s a fundamentally different approach to how we build user interfaces. They’re no longer completely deterministic. They’re also extremely personalized to the point where it’s ridiculous.” - Greg Nudelman (12:47)
- “ To put an LLM into a product means that there’s a non-zero chance your user is going to have a [negative] experience and no longer be your customer. That is a giant reputational risk, and there’s also a financial cost associated with running these models. I think we need to take more of a service design lens when it comes to [designing our products with AI] and ask what is the thing somebody wants to do… not on my website, but in their lives? What brings them to my [product]? How can I imagine a different world that leverages these capabilities to help them do their job? Because what [designers] are competing against is [a customer workflow] that probably worked well enough.” - Simon Landry (15:41)
- “ When we go general availability (GA) with a product, that traditionally means [designers] have done all the research, got everything perfect, and it’s all great, right? Today, GA is a starting gun. We don’t know [if the product is working] unless we [seek out user feedback]. A massive research method is needed. [We need qualitative research] like sitting down with the customer and watching them use the product to really understand what is happening[…] but you also need to collect data. What are they typing in? What are they getting back? Is somebody who’s typing in this type of question always having a short interaction? Let’s dig into it with rapid, iterative testing and evaluation, so that we can update our model and then move forward. Launching a product these days means the starting guns have been fired. Put the research to work to figure out the next step.” - (23:29) Greg Nudelman
- “ I think that having diversity on your design team (i.e. gender, level of experience, etc.) is critical. We’ve already seen some terrible outcomes. Multiple examples where an LLM is crafting horrendous emails, introductions, and so on. This is exactly why UXers need to get involved [with building LLMs]. This is why diversity in UX and on your tech team that deals with AI is so valuable. Number one piece of advice: get some researchers. Number two: make sure your team is diverse.” - Greg Nudelman (32:39)
- “ It’s extremely important to have UX talks with researchers, content designers, and data teams. It’s important to understand what a user is trying to do, the context [of their decisions], and the intention. [Designers] need to help [the data team] understand the types of data and prompts being used to train models. Those things are better when they’re written and thought of by [designers] who understand where the user is coming from. [Design teams working with data teams] are getting much better results than the [teams] that are working in a vacuum.” - Paz Perez (35:19)
Links
![161 - Designing and Selling Enterprise AI Products [Worth Paying For]](https://pbcdn1.podbean.com/imglogo/image-logo/11158279/v2-ed-cover-2_300x300.jpg)
Tuesday Jan 21, 2025
161 - Designing and Selling Enterprise AI Products [Worth Paying For]
Tuesday Jan 21, 2025
Tuesday Jan 21, 2025
With GenAI and LLMs comes great potential to delight and damage customer relationships—both during the sale, and in the UI/UX. However, are B2B AI product teams actually producing real outcomes, on the business side and the UX side, such that customers find these products easy to buy, trustworthy and indispensable?
What is changing with customer problems as a result of LLM and GenAI technologies becoming more readily available to implement into B2B software? Anything?
Is your current product or feature development being driven by the fact you might be able to now solve it with AI? The “AI-first” team sounds like it’s cutting edge, but is that really determining what a customer will actually buy from you?
Today I want to talk to you about the interplay of GenAI, customer trust (both user and buyer trust), and the role of UX in products using probabilistic technology.
These thoughts are based on my own perceptions as a “user” of AI “solutions,” (quotes intentional!), conversations with prospects and clients at my company (Designing for Analytics), as well as the bright minds I mentor over at the MIT Sandbox innovation fund. I also wrote an article about this subject if you’d rather read an abridged version of my thoughts.
Highlights/ Skip to:
- AI and LLM-Powered Products Do Not Turn Customer Problems into “Now” and “Expensive” Problems (4:03)
- Trust and Transparency in the Sale and the Product UX: Handling LLM Hallucinations (Confabulations) and Designing for Model Interpretability (9:44)
- Selling AI Products to Customers Who Aren’t Users (13:28)
- How LLM Hallucinations and Model Interpretability Impact User Trust of Your Product (16:10)
- Probabilistic UIs and LLMs Don’t Negate the Need to Design for Outcomes (22:48)
- How AI Changes (or Doesn’t) Our Benchmark Use Cases and UX Outcomes (28:41)
- Closing Thoughts (32:36)
Quotes from Today’s Episode
- “Putting AI or GenAI into a product does not change the urgency or the depth of a particular customer problem; it just changes the solution space. Technology shifts in the last ten years have enabled founders to come up with all sorts of novel ways to leverage traditional machine learning, symbolic AI, and LLMs to create new products and disrupt established products; however, it would be foolish to ignore these developments as a product leader. All this technology does is change the possible solutions you can create. It does not change your customer situation, problem, or pain, either in the depth, or severity, or frequency. In fact, it might actually cause some new problems. I feel like most teams spend a lot more time living in the solution space than they do in the problem space. Fall in love with the problem and love that problem regardless of how the solution space may continue to change.” (4:51)
- “Narrowly targeted, specialized AI products are going to beat solutions trying to solve problems for multiple buyers and customers. If you’re building a narrow, specific product for a narrow, specific audience, one of the things you have on your side is a solution focused on a specific domain used by people who have specific domain experience. You may not need a trillion-parameter LLM to provide significant value to your customer. AI products that have a more specific focus and address a very narrow ICP I believe are more likely to succeed than those trying to serve too many use cases—especially when GenAI is being leveraged to deliver the value. I think this can be true even for platform products as well. Narrowing the audience you want to serve also narrows the scope of the product, which in turn should increase the value that you bring to that audience—in part because you probably will have fewer trust, usability, and utility problems resulting from trying to leverage a model for a wide range of use cases.” (17:18)
- “Probabilistic UIs and LLMs are going to create big problems for product teams, particularly if they lack a set of guiding benchmark use cases. I talk a lot about benchmark use cases as a core design principle and data-rich enterprise products. Why? Because a lot of B2B and enterprise products fall into the game of ‘adding more stuff over time.’ ‘Add it so you can sell it.’ As products and software companies begin to mature, you start having product owners and PMs attached to specific technologies or parts of a product. Figuring out how to improve the customer’s experience over time against the most critical problems and needs they have is a harder game to play than simply adding more stuff— especially if you have no benchmark use cases to hold you accountable. It’s hard to make the product indispensable if it’s trying to do 100 things for 100 people.“ (22:48)
- “Product is a hard game, and design and UX is by far not the only aspect of product that we need to get right. A lot of designers don’t understand this, and they think if they just nail design and UX, then everything else solves itself. The reason the design and experience part is hard is that it’s tied to behavior change– especially if you are ‘disrupting’ an industry, incumbent tool, application, or product. You are in the behavior-change game, and it’s really hard to get it right. But when you get it right, it can be really amazing and transformative.” (28:01)
- “If your AI product is trying to do a wide variety of things for a wide variety of personas, it’s going to be harder to determine appropriate benchmarks and UX outcomes to measure and design against. Given LLM hallucinations, the increased problem of trust, model drift problems, etc., your AI product has to actually innovate in a way that is both meaningful and observable to the customer. It doesn’t matter what your AI is trying to “fix.” If they can’t see what the benefit is to them personally, it doesn’t really matter if technically you’ve done something in a new and novel way. They’re just not going to care because that question of what’s in it for me is always sitting behind, in their brain, whether it’s stated out loud or not.” (29:32)
Links

Tuesday Jan 07, 2025
Tuesday Jan 07, 2025
Today, I’m chatting with Adam Berke, the Chief Product Officer at The Predictive Index. For 70 years, The Predictive Index has helped customers hire the right employees, and after the merger with Charma, their products now nurture the employee/manager relationship. This is something right up Adam’s alley, as he previously helped co-found the employee and workflow performance management software company Charma before both aforementioned organizations merged back in 2023.
You’ll hear Adam talk about the first-time challenges (and successes) that come with integrating two products and two product teams, and why squashing out any ambiguity with overindexing (i.e. coming prepared with new org charts ASAP) is essential during the process.
Integrating behavioral science into the world of data is what has allowed The Predictive Index to thrive since the 1950s. While this is the company’s main selling point, Adam explains how the science-forward approach can still create some disagreements–and learning opportunities–with The Predictive Index’s legacy customers.
Highlights/ Skip to:
- What is The Predictive Index and how does the product team conduct their work (1:24)
- Why Charma merged with The Predictive Index (5:11)
- The challenges Adam has faced as a CPO since the Charma/Predictive Index merger (9:21)
- How Predictive Index has utilized behavioral science to remove the guesswork of hiring (14:22)
- The makeup of the product team that designs and delivers The Predictive Index's products (20:24)
- Navigating the clashes between changing science and Predictive Index's legacy customers (22:37)
- How The Predictive Index analyzes the quality of their products with multiple user data metrics (27:21)
- What Adam would do differently if had to redo the merger (37:52)
- Where you can find more from Adam and The Predictive Index (41:22)
Quotes from Today’s Episode
- “ Acquisitions are complicated. Outside of a few select companies, there are very few that have mergers and acquisitions as a repeatable discipline. More often than not, neither [company in the merger] has an established playbook for how to do this. You’re [acquiring a company] because of its product, team, or maybe even one feature. You have different theories on how the integration might look, but experiencing it firsthand is a whole different thing. My initial role didn’t exist in [The Predictive Index] before. The rest of the whole PI organization knows how to get their work done before this, and now there’s this new executive. There’s just tons of [questions and confusion] if you don’t go in assuming good faith and be willing to work through the bumps. It’s going to get messy.” - Adam Berke (9:41)
- “We integrated the teams and relaunched the product. Charma became [a part of the product called] PI Perform, and right away there was re-skinning, redesign, and some back-end architecture that needed to happen to make it its own module. From a product perspective, we’re trying to deliver [Charma’s] unique value prop. That’s when we can start [figuring out how to] infuse PI’s behavioral science into these workflows. We have this foundation. We got the thing organized. We got the teams organized. We were 12 people when we were acquired… and here we are a year later. 150+ new customers have been added to PI Perform because it’s accelerating now that we’re figuring out the product.” - Adam Berke (12:18)
- “Our product team has the roles that you would expect: a PM, researcher, ux design, and then one atypical role–a PhD behavioral scientist. [Our product already had] suggested topics and templates [for manager/IC one-on-one meetings], but now we want to make those templates and suggested topics more dynamic. There might be different questions to draw out a better discussion, and our behavioral scientists help us determine [those questions]... [Our behavioral scientists] look at the science, other research, and calibrate [the one-on-one questions] before we implement them into the product.” - Adam Berke (21:04)
- “We’ve adapted the technology and science over time as they move forward. We want to update the product with the most recent science, but there are customers who have used this product in a certain way for decades in some cases. Our desire is to follow the science… but you can’t necessarily stop people from using the stuff in a way that they used it 20 years ago. We sometimes end up with disagreements [with customers over product changes based on scientific findings], and those are tricky conversations. But even in that debate… it comes down to all the best practices you would follow in product development in general–listening to your customers, asking that additional ‘why’ question, and trying to get to root causes.” - Adam Berke (23:36)
- “ We’re doing an upgrade to our platform right now trying to figure out how to manage user permissions in the new version of the product. The way that we did it in the old version had a lot of problems associated… and we put out a survey. “Hey, do you use this to do X?’ We got hundreds of responses and found that half of them were not using it for the reason that we thought they were. At first, we thought thousands of people were going to have deep, deep sensitivities to tweaks in how this works, and now we realize that it might be half that, at best. A simple one-question survey asked about the right problem in the right way can help to avoid a lot of unnecessary thrashing on a product problem that might not have even existed in the first place.” - Adam Berke (35:22)
Links Referenced
- The Predictive Index: https://www.predictiveindex.com/
- LinkedIn: https://www.linkedin.com/in/adamberke/

Tuesday Dec 24, 2024
Tuesday Dec 24, 2024
Today, I’m talking to Andy Sutton, GM of Data and AI at Endeavour Group, Australia's largest liquor and hospitality company. In this episode, Andy—who is also a member of the Data Product Leadership Community (DPLC)—shares his journey from traditional, functional analytics to a product-led approach that drives their mission to leverage data and personalization to build the “Spotify for wines.” This shift has greatly transformed how Endeavour’s digital and data teams work together, and Andy explains how their advanced analytics work has paid off in terms of the company’s value and profitability.
You’ll learn about the often overlooked importance of relationships in a data-driven world, and how Andy sees the importance of understanding how users do their job in the wild (with and without your product(s) in hand). Earlier this year, Andy also gave the DPLC community a deeper look at how they brew data products at EDG, and that recording is available to our members in the archive.
We covered:
- What it was like at EDG before Andy started adopting a producty approach to data products and how things have now changed (1:52)
- The moment that caused Andy to change how his team was building analytics solutions (3:42)
- The amount of financial value that Andy's increased with his scaling team as a result of their data product work (5:19)
- How Andy and Endeavour use personalization to help build “the Spotify of wine” (9:15)
- What the team under Andy required in order to make the transition to being product-led (10:27)
- The successes seen by Endeavour through the digital and data teams’ working relationship (14:04)
- What data product management looks like for Andy’s team (18:45)
- How Andy and his team find solutions to bridging the adoption gap (20:53)
- The importance of exposure time to end users for the adoption of a data product (23:43)
- How talking to the pub staff at EDG’s bars and restaurants helps his team build better data products (27:04)
- What Andy loves about working for Endeavour Group (32:25)
- What Andy would change if he could rewind back to 2022 and do it all over (34:55)
- Final thoughts (38:25)
Quotes from Today’s Episode
- “I think the biggest thing is the value we unlock in terms of incremental dollars, right? I’ve not worked in analytics team before where we’ve been able to deliver a measurable value…. So, we’re actually—in theory—we’re becoming a profit center for the organization, not just a cost center. And so, there’s kind of one key metric. The second one, we do measure the voice of the team and how engaged our team are, and that’s on an upward trend since we moved to the new operating model, too. We also measure [a type of] “voice of partner” score [and] get something like a 4.1 out of 5 on that scale. Those are probably the three biggest ones: we’re putting value in, and we’re delivering products, I guess, our internal team wants to use, and we are building an enthused team at the same time.” - Andy Sutton (16:18)
- “ You can put an [unfinished] product in front of an end customer, and they will give you quality feedback that you can then iterate on quickly. You can do that with an internal team, but you’ll lose credibility. Internal teams hold their analytics colleagues to a higher standard than the external customers. We’re trying to change how people do their roles. People feel very passionate about the roles they do, and how they do them, and what they bring to that role. We’re trying to build some of that into products. It requires probably more design consideration than I’d anticipated, and we’re still bringing in more designers to help us move closer to the start line.’” - Andy Sutton (19:25)
- “ [Customer research] is becoming critical in terms of the products we’re building. You’re building a product, a set of products, or a process for an operations team. In our context, an operations team can mean a team of people who run a pub. It’s not just about convincing me, my product managers, or my data scientists that you need research; we want to take some of the resources out of running that bar for a period of time because we want to spend time with [the pub staff] watching, understanding, and researching. We’ve learned some of these things along the way… we’ve earned the trust, we’ve earned that seat at the table, and so we can have those conversations. It’s not trivial to get people to say, ‘I’ll give you a day-long workshop, or give you my team off of running a restaurant and a bar for the day so that they can spend time with you, and so you can understand our processes.’” - Andy Sutton (24:42)
- “ I think what is very particular to pubs is the importance of the interaction between the customer and the person serving the customer. [Pubs] are about the connections between the staff and the customer, and you don’t get any of that if you’re just looking at things from a pure data perspective… You don’t see the [relationships between pub staff and customer] in the [data], so how do you capture some of that in your product? It’s about understanding the context of the data, not just the data itself.” - Andy Sutton (28:15)
- “Every winery, every wine grower, every wine has got a story. These conversations [and relationships] are almost natural in our business. Our CEO started work on the shop floor in one of our stores 30 years ago. That kind of relationship stuff percolates through the organization. Having these conversations around the customer and internal stakeholders in the context of data feels a lot easier because storytelling and relationships are the way we get things done. An analytics team may get frustrated with people who can’t understand data, but it’s [the analytics team’s job] to help bridge that gap.” - Andy Sutton (32:34)
Links Referenced
- LinkedIn: https://www.linkedin.com/in/andysutton/
- Endeavour Group: https://www.endeavourgroup.com.au/
- Data Product Leadership Community https://designingforanalytics.com/community

Tuesday Dec 10, 2024
Tuesday Dec 10, 2024
After getting started in construction management, Anna Jacobson traded in the hard hat for the world of data products and operations at a VC company. Anna, who has a structural engineering undergrad and a masters in data science, is also a Founding Member of the Data Product Leadership Community (DPLC). However, her work with data products is more “accidental” and is just part of her responsibility at Operator Collective. Nonetheless, Anna had a lot to share about building data products, dashboards, and insights for users—including resistant ones!
That resistance is precisely what I wanted to talk to her about in this episode: how does Anna get somebody to adopt a data product to which they may be apathetic, if not completely resistant?
At the end of the episode, Anna gives us a sneak peek at what she’s planning to talk about in our final 2024 live DPLC group discussion coming up on 12/18/2024.
We covered:
- (1:17) Anna's background and how she got involved with data products
- (3:32) The ways Anna applied her experiences working in construction management to her current work with data products at a VC firm
- (5:32) Explaining one of the main data products she works on at Operator Collective
- (9:55) How Anna defines success for her data products
- (15:21) The process of designing data products for "non-believers"
- (21:08) How to think about "super users" and their feedback on a data product
- (27:11) How a company's cultural problems can be a blocker for product adoption
- (38:21) A preview of what you can expect from Anna's talk and live group discussion in the DPLC
- (40:24) Closing thoughts from Anna
- (42:54) Where you can find more from Anna
Quotes from Today’s Episode
- “People working with data products are always thinking about how to [gain user adoption of their product]... I can’t think of a single one where [all users] were immediately on board. There’s a lot to unpack in what it takes to get non-believers on board, and it’s something that none of us ever get any training on. You just learn through experience, and it’s not something that most people took a class on in college. All of the social science around what we do gets really passed over for all the technical stuff. It takes thinking through and understanding where different [users] are coming from, and [understanding] that my perspective alone is not enough to make it happen.” - Anna Jacobson (16:00)
- “If you only bring together the super users and don’t try to get feedback from the average user, you are missing the perspective of the person who isn’t passionate about the product. A non-believer is someone who is just over capacity. They may be very hard-working, they may be very smart, but they just don’t have the bandwidth for new things. That’s something that has to be overcome when you’re putting a new product into place.” - Anna Jacobson (22:35)
- “If a company can’t find budget to support [a data product], that’s a cultural decision. It’s not a financial decision. They find the money for the things that they care about. Solving the technology challenge is pretty easy, but you have to have a company that’s motivated to do that. If you want to implement something new, be it a data product or any change in an organization, identifying the cultural barriers and figuring out how to bring [people in an organization] on board is the crux of it. The money and the technology can be found.” - Anna Jacobson (27:58)
- “I think people are actually very bad at explaining what they want, and asking people what they want is not helpful. If you ask people what they want to do, then I think you have a shot at being able to build a product that does [what they want]. The executive sponsors typically have a very different perspective on what the product [should be] than the users do. If all of your information is getting filtered through the executive sponsor, you’re probably not getting the full picture” - Anna Jacobson (31:45)
- “You want to define what the opportunity is, the problem, the solution, and you want to talk about costs and benefits. You want to align [the data product] with corporate strategy, and those things are fairly easy to map out. But as you get down to the user, what they want to know is, ‘How is this going to make my life easier? How is this going to make [my job] faster? How is it going to result in better outcomes?’ They may have an interest in how it aligns with corporate strategy, but that’s not what’s going to motivate them. It’s really just easier, faster, better.” - Anna Jacobson (35:00)
Links Referenced
LinkedIn: https://www.linkedin.com/in/anna-ching-jacobson/
DPLC (Data Product Leadership Community): https://designingforanalytics.com/community

Tuesday Nov 26, 2024
Tuesday Nov 26, 2024
R&D for materials-based products can be expensive, because improving a product’s materials takes a lot of experimentation that historically has been slow to execute. In traditional labs, you might change one variable, re-run your experiment, and see if the data shows improvements in your desired attributes (e.g. strength, shininess, texture/feel, power retention, temperature, stability, etc.). However, today, there is a way to leverage machine learning and AI to reduce the number of experiments a material scientist needs to run to gain the improvements they seek. Materials scientists spend a lot of time in the lab—away from a computer screen—so how do you design a desirable informatics SAAS that actually works, and fits into the workflow of these end users?
As the Chief Product Officer at MaterialsZone, Ori Yudilevich came on Experiencing Data with me to talk about this challenge and how his PM, UX, and data science teams work together to produce a SAAS product that makes the benefits of materials informatics so valuable that materials scientists depend on their solution to be time and cost-efficient with their R&D efforts.
We covered:
- (0:45) Explaining what Ori does at MaterialZone and who their product serves
- (2:28) How Ori and his team help make material science testing more efficient through their SAAS product
- (9:37) How they design a UX that can work across various scientific domains
- (14:08) How “doing product” at MaterialsZone matured over the past five years
- (17:01) Explaining the "Wizard of Oz" product development technique
- (21:09) The importance of integrating UX designers into the "Wizard of Oz"
- (23:52) The challenges MaterialZone faces when trying to get users to adopt to their product
- (32:42) Advice Ori would've given himself five years ago
- (33:53) Where you can find more from MaterialsZone and Ori
Quotes from Today’s Episode
- “The fascinating thing about materials science is that you have this variety of domains, but all of these things follow the same process. One of the problems [consumer goods companies] face is that they have to do lengthy testing of their products. This is something you can use machine learning to shorten. [Product research] is an iterative process that typically takes a long time. Using your data effectively and using machine learning to predict what can happen, what’s better to try out, and what will reduce costs can accelerate time to market.” - Ori Yudilevich (3:47)
- “The difference [in time spent testing a product] can be up to 70% [i.e. you can run 70% fewer experiments using ML.] That [also] means 70% less resources you’re using. Under the ‘old system’ of trial and error, you were just trying out a lot of things. The human mind cannot process a large number of parameters at once, so [a materials scientist] would just start playing only with [one parameter at a time]. You’ll have many experiments where you just try to optimize [for] one parameter, but then you might have 20, 30, or 100 more [to test]. Using machine learning, you can change a lot of parameters at once. The model can learn what has the most effect, what has a positive effect, and what has a negative effect. The differences can be really huge.” - Ori Yudilevich (5:50)
- “Once you go deeper into a use case, you see that there are a lot of differences. The types of raw materials, the data structure, the quantity of data, etc. For example, with batteries, you have lots of data because you can test hundreds all at once. Whereas with something like ceramics, you don’t try so many [experiments]. You just can’t. It’s much slower. You can’t do so many [experiments] in parallel. You have much less data. Your models are different, and your data structure is different. But there’s also quite a lot of commonality because you’re storing the data. In the end, you have each domain, some raw materials, formulations, tests that you’re doing, and different statistical plots that are very common.” - Ori Yudilvech (11:24)
- “We’ll typically do what we call the ‘Wizard of Oz’ technique. You simulate as if you have a feature, but you’re actually working for your client behind the scenes. You tell them [the simulated feature] is what you’re doing, but then measure [the client’s response] to understand if there’s any point in further developing that feature. Once you validate it, have enough data, and know where the feature is going, then you’ll start designing it and releasing it in incremental stages. We’ve made a lot of progress in how we discover opportunities and how we build something iteratively to make sure that we’re always going in the right direction” - Ori Yudilevich (15:56)
- “The main problem we’re encountering is changing the mindset of users. Our users are not people who sit in front of a computer. These are researchers who work in [a materials science] lab. The challenge [we have] is getting people to use the platform more. To see it’s worth [their time] to look at some insights, and run the machine learning models. We’re always looking for ways to make that transition faster… and I think the key is making [the user experience] just fun, easy, and intuitive.” - Ori Yudilevich (24:17)
- “Even if you make [the user experience] extremely smooth, if [users] don’t see what they get out of it, they’re still not going to [adopt your product] just for the sake of doing it. What we find is if this [product] can actually make them work faster or develop better products– that gets them interested. If you’re adopting these advanced tools, it makes you a better researcher and worker. People who [adopt those tools] grow faster. They become leaders in their team, and they slowly drag the others in.” - Ori Yudilevich (26:55)
- “Some of [MaterialsZone’s] most valuable employees are the people who have been users. Our product manager is a materials scientist. I’m not a material scientist, and it’s hard to imagine being that person in the lab. What I think is correct turns out to be completely wrong because I just don’t know what it’s like. Having [material scientists] who’ve made the transition to software and data science? You can’t replace that.” - Ori Yudilevich (31:32)
Links Referenced
Website: https://www.materials.zone
LinkedIn: https://www.linkedin.com/in/oriyudilevich/
Email: ori@materials.zone

Thursday Nov 14, 2024
Thursday Nov 14, 2024
Jeremy Forman joins us to open up about the hurdles– and successes that come with building data products for pharmaceutical companies. Although he’s new to Pfizer, Jeremy has years of experience leading data teams at organizations like Seagen and the Bill and Melinda Gates Foundation. He currently serves in a more specialized role in Pfizer’s R&D department, building AI and analytical data products for scientists and researchers. .
Jeremy gave us a good luck at his team makeup, and in particular, how his data product analysts and UX designers work with pharmaceutical scientists and domain experts to build data-driven solutions.. We talked a good deal about how and when UX design plays a role in Pfizer’s data products, including a GenAI-based application they recently launched internally.
Highlights/ Skip to:
- (1:26) Jeremy's background in analytics and transition into working for Pfizer
- (2:42) Building an effective AI analytics and data team for pharma R&D
- (5:20) How Pfizer finds data products managers
- (8:03) Jeremy's philosophy behind building data products and how he adapts it to Pfizer
- (12:32) The moment Jeremy heard a Pfizer end-user use product management research language and why it mattered
- (13:55) How Jeremy's technical team members work with UX designers
- (18:00) The challenges that come with producing data products in the medical field
- (23:02) How to justify spending the budget on UX design for data products
- (24:59) The results we've seen having UX design work on AI / GenAI products
- (25:53) What Jeremy learned at the Bill & Melinda Gates Foundation with regards to UX and its impact on him now
- (28:22) Managing the "rough dance" between data science and UX
- (33:22) Breaking down Jeremy's GenAI application demo from CDIOQ
- (36:02) What would Jeremy prioritize right now if his team got additional funding
- (38:48) Advice Jeremy would have given himself 10 years ago
- (40:46) Where you can find more from Jeremy
Quotes from Today’s Episode
- “We have stream-aligned squads focused on specific areas such as regulatory, safety and quality, or oncology research. That’s so we can create functional career pathing and limit context switching and fragmentation. They can become experts in their particular area and build a culture within that small team. It’s difficult to build good [pharma] data products. You need to understand the domain you’re supporting. You can’t take somebody with a financial background and put them in an Omics situation. It just doesn’t work. And we have a lot of the scars, and the failures to prove that.” - Jeremy Forman (4:12)
- “You have to have the product mindset to deliver the value and the promise of AI data analytics. I think small, independent, autonomous, empowered squads with a product leader is the only way that you can iterate fast enough with [pharma data products].” - Jeremy Forman (8:46)
- “The biggest challenge is when we say data products. It means a lot of different things to a lot of different people, and it’s difficult to articulate what a data product is. Is it a view in a database? Is it a table? Is it a query? We’re all talking about it in different terms, and nobody’s actually delivering data products.” - Jeremy Forman (10:53)
- “I think when we’re talking about [data products] there’s some type of data asset that has value to an end-user, versus a report or an algorithm. I think it’s even hard for UX people to really understand how to think about an actual data product. I think it’s hard for people to conceptualize, how do we do design around that? It’s one of the areas I think I’ve seen the biggest challenges, and I think some of the areas we’ve learned the most. If you build a data product, it’s not accurate, and people are getting results that are incomplete… people will abandon it quickly.” - Jeremy Forman (15:56)
- “ I think that UX design and AI development or data science work is a magical partnership, but they often don’t know how to work with each other. That’s been a challenge, but I think investing in that has been critical to us. Even though we’ve had struggles… I think we’ve also done a good job of understanding the [user] experience and impact that we want to have. The prototype we shared [at CDIOQ] is driven by user experience and trying to get information in the hands of the research organization to understand some portfolio types of decisions that have been made in the past. And it’s been really successful.” - Jeremy Forman (24:59)
- “If you’re having technology conversations with your business users, and you’re focused only the technology output, you’re just building reports. [After adopting If we’re having technology conversations with our business users and only focused on the technology output, we’re just building reports. [After we adopted a human-centered design approach], it was talking [with end-users] about outcomes, value, and adoption. Having that resource transformed the conversation, and I felt like our quality went up. I felt like our output went down, but our impact went up. [End-users] loved the tools, and that wasn’t what was happening before… I credit a lot of that to the human-centered design team.” - Jeremy Forman (26:39)
- “When you’re thinking about automation through machine learning or building algorithms for [clinical trial analysis], it becomes a harder dance between data scientists and human-centered design. I think there’s a lack of appreciation and understanding of what UX can do. Human-centered design is an empathy-driven understanding of users’ experience, their work, their workflow, and the challenges they have. I don’t think there’s an appreciation of that skill set.” - Jeremy Forman (29:20)
- “Are people excited about it? Is there value? Are we hearing positive things? Do they want us to continue? That’s really how I’ve been judging success. Is it saving people time, and do they want to continue to use it? They want to continue to invest in it. They want to take their time as end-users, to help with testing, helping to refine it. Those are the indicators. We’re not generating revenue, so what does the adoption look like? Are people excited about it? Are they telling friends? Do they want more? When I hear that the ten people [who were initial users] are happy and that they think it should be rolled out to the whole broader audience, I think that’s a good sign.” - Jeremy Forman (35:19)
Links Referenced
LinkedIn: https://www.linkedin.com/in/jeremy-forman-6b982710/

Tuesday Oct 29, 2024
Tuesday Oct 29, 2024
The relationship between AI and ethics is both developing and delicate. On one hand, the GenAI advancements to date are impressive. On the other, extreme care needs to be taken as this tech continues to quickly become more commonplace in our lives. In today’s episode, Ovetta Sampson and I examine the crossroads ahead for designing AI and GenAI user experiences.
While professionals and the general public are eager to embrace new products, recent breakthroughs, etc.; we still need to have some guard rails in place. If we don’t, data can easily get mishandled, and people could get hurt. Ovetta possesses firsthand experience working on these issues as they sprout up. We look at who should be on a team designing an AI UX, exploring the risks associated with GenAI, ethics, and need to be thinking about going forward.
Highlights/ Skip to:
- (1:48) Ovetta's background and what she brings to Google’s Core ML group
- (6:03) How Ovetta and her team work with data scientists and engineers deep in the stack
- (9:09) How AI is changing the front-end of applications
- (12:46) The type of people you should seek out to design your AI and LLM UXs
- (16:15) Explaining why we’re only at the very start of major GenAI breakthroughs
- (22:34) How GenAI tools will alter the roles and responsibilities of designers, developers, and product teams
- (31:11) The potential harms of carelessly deploying GenAI technology
- (42:09) Defining acceptable levels of risk when using GenAI in real-world applications
- (53:16) Closing thoughts from Ovetta and where you can find her
Quotes from Today’s Episode
- “If artificial intelligence is just another technology, why would we build entire policies and frameworks around it? The reason why we do that is because we realize there are some real thorny ethical issues [surrounding AI]. Who owns that data? Where does it come from? Data is created by people, and all people create data. That’s why companies have strong legal, compliance, and regulatory policies around [AI], how it’s built, and how it engages with people. Think about having a toddler and then training the toddler on everything in the Library of Congress and on the internet. Do you release that toddler into the world without guardrails? Probably not.” - Ovetta Sampson (10:03)
- “[When building a team] you should look for a diverse thinker who focuses on the limitations of this technology- not its capability. You need someone who understands that the end destination of that technology is an engagement with a human being. You need somebody who understands how they engage with machines and digital products. You need that person to be passionate about testing various ways that relationships can evolve. When we go from execution on code to machine learning, we make a shift from [human] agency to a shared-agency relationship. The user and machine both have decision-making power. That’s the paradigm shift that [designers] need to understand. You want somebody who can keep that duality in their head as they’re testing product design.” - Ovetta Sampson (13:45)
- “We’re in for a huge taxonomy change. There are words that mean very specific definitions today. Software engineer. Designer. Technically skilled. Digital. Art. Craft. AI is changing all that. It’s changing what it means to be a software engineer. Machine learning used to be the purview of data scientists only, but with GenAI, all of that is baked in to Gemini. So, now you start at a checkpoint, and you’re like, all right, let’s go make an API, right? So, the skills, the understanding, the knowledge, the taxonomy even, how we talk about these things, how do we talk about the machine who speaks to us talks to us, who could create a podcast out of just voice memos?” - Ovetta Sampson (24:16)
- “We have to be very intentional [when building AI tools], and that’s the kind of folks you want on teams. [Designers] have to go and play scary scenarios. We have to do that. No designer wants to be “Negative Nancy,” but this technology has huge potential to harm. It has harmed. If we don’t have the skill sets to recognize, document, and minimize harm, that needs to be part of our skill set. If we’re not looking out for the humans, then who actually is?” - Ovetta Sampson (32:10)
- “[Research shows] things happen to our brain when we’re exposed to artificial intelligence… there are real human engagement risks that are an opportunity for design. When you’re designing a self-driving car, you can’t just let the person go to sleep unless the car is fully [automated] and every other car on the road is self-driving. If there are humans behind the wheel, you need to have a feedback loop system—something that’s going to happen [in case] the algorithm is wrong. If you don’t have that designed, there’s going to be a large human engagement risk that a car is going to run over somebody who’s [for example] pushing a bike up a hill[...] Why? The car could not calculate the right speed and pace of a person pushing their bike. It had the speed and pace of a person walking, the speed and pace of a person on a bike, but not the two together. Algorithms will be wrong, right?” - Ovetta Sampson (39:42)
- “Model goodness used to be the purview of companies and the data scientists. Think about the first search engines. Their model goodness was [about] 77%. That’s good, right? And then people started seeing photos of apes when [they] typed in ‘black people.’ Companies have to get used to going to their customers in a wide spectrum and asking them when they’re [models or apps are] right and wrong. They can’t take on that burden themselves anymore. Having ethically sourced data input and variables is hard work. If you’re going to use this technology, you need to put into place the governance that needs to be there.” - Ovetta Sampson (44:08)

Tuesday Oct 15, 2024
Tuesday Oct 15, 2024
Sometimes DIY UI/UX design only gets you so far—and you know it’s time for outside help. One thing prospects from SAAS analytics and data-related product companies often ask me is how things are like in the other guy/gal’s backyard. They want to compare their situation to others like them. So, today, I want to share some of the common “themes” I see that usually are the root causes of what leads to a phone call with me.
By the time I am on the phone with most prospects who already have a product in market, they’re usually either having significant problems with 1 or more of the following: sales friction (product value is opaque); low adoption/renewal worries (user apathy), customer complaints about UI/UX being hard to use; velocity (team is doing tons of work, but leader isn’t seeing progress)—and the like.
I’m hoping today’s episode will explain some of the root causes that may lead to these issues — so you can avoid them in your data product building work!
Highlights/ Skip to:
- (10:47) Design != "front-end development" or analyst work
- (12:34) Liking doing UI/UX/viz design work vs. knowing
- (15:04) When a leader sees lots of work being done, but the UX/design isn’t progressing
- (17:31) Your product’s UX needs to convey some magic IP/special sauce…but it isn’t
- (20:25) Understanding the tradeoffs of using libraries, templates, and other solution’s design as a foundation for your own
- (25:28) The sunk cost bias associated with POCs and “we’ll iterate on it”
- (28:31) Relying on UI/UX "customization" to please all customers
- (31:26) The hidden costs of abstraction of system objects, UI components, etc. to make life easier for engineering and technical teams
- (32:32) Believing you’ll know the design is good “when you see it” (and what you don’t know you don’t know)
- (36:43) Believing that because the data science/AI/ML modeling under your solution was, accurate, difficult, and/or expensive makes it automatically worth paying for
Quotes from Today’s Episode
- The challenge is often not knowing what you don’t know about a project. We often end up focusing on building the tech [and rushing it out] so we can get some feedback on it… but product is not about getting it out there so we can get feedback. The goal of doing product well is to produce value, benefits, or outcomes. Learning is important, but that’s not what the objective is. The objective is benefits creation. (5:47)
- When we start doing design on a project that’s not design actionable, we build debt and sometimes can hurt the process of design. If you start designing your product with an entire green space, no direction, and no constraints, the chance of you shipping a good v1 is small. Your product strategy needs to be design-actionable for the team to properly execute against it. (19:19)
- While you don’t need to always start at zero with your UI/UX design, what are the parts of your product or application that do make sense to borrow , “steal” and cheat from? And when does it not? It takes skill to know when you should be breaking the rules or conventions. Shortcuts often don’t produce outsized results—unless you know what a good shortcut looks like. (22:28)
- A proof of concept is not a minimum valuable product. There’s a difference between proving the tech can work and making it into a product that’s so valuable, someone would exchange money for it because it’s so useful to them. Whatever that value is, these are two different things. (26:40)
- Trying to do a little bit for everybody [through excessive customization] can often result in nobody understanding the value or utility of your solution. Customization can hide the fact the team has decided not to make difficult choices. If you’re coming into a crowded space… it’s like’y not going to be a compelling reason to [convince customers to switch to your solution]. Customization can be a tax, not a benefit. (29:26)
- Watch for the sunk cost bias [in product development]. [Buyers] don’t care how the sausage was made. Many don’t understand how the AI stuff works, they probably don’t need to understand how it works. They want the benefits downstream from technology wrapped up in something so invaluable they can’t live without it. Watch out for technically right, effectively wrong. (39:27)