

132.3K
Downloads
165
Episodes
Is the value of your enterprise analytics SAAS or AI product not obvious through it’s UI/UX? Got the data and ML models right...but user adoption of your dashboards and UI isn’t what you hoped it would be? While it is easier than ever to create AI and analytics solutions from a technology perspective, do you find as a founder or product leader that getting users to use and buyers to buy seems harder than it should be? If you lead an internal enterprise data team, have you heard that a ”data product” approach can help—but you’re concerned it’s all hype? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I share the stories of leaders who are leveraging product and UX design to make SAAS analytics, AI applications, and internal data products indispensable to their customers. After all, you can’t create business value with data if the humans in the loop can’t or won’t use your solutions. Every 2 weeks, I release interviews with experts and impressive people I’ve met who are doing interesting work at the intersection of enterprise software product management, UX design, AI and analytics—work that you need to hear about and from whom I hope you can borrow strategies. I also occasionally record solo episodes on applying UI/UX design strategies to data products—so you and your team can unlock financial value by making your users’ and customers’ lives better. Hashtag: #ExperiencingData. JOIN MY INSIGHTS LIST FOR 1-PAGE EPISODE SUMMARIES, TRANSCRIPTS, AND FREE UX STRATEGY TIPS https://designingforanalytics.com/ed ABOUT THE HOST, BRIAN T. O’NEILL: https://designingforanalytics.com/bio/
Episodes

Tuesday Mar 12, 2019
Tuesday Mar 12, 2019
Dr. Puneet Batra is the Associate Director of Machine Learning at the Broad Institute, where his team builds machine learning algorithms and pipelines to help discover new biological insights and impact disease. Puneet has spent his career stitching together data-driven solutions: in location data analysis, as cofounder of LevelTrigger; in health care, as Chief Data Scientist at Kyruus; as lead Analytic Scientist at Aster Data (Acq by Teradata); and in fundamental models of particle physics, developing theories for Fermilab’s Tevatron and CERN’s Large Hadron Collider. He has held research positions at Harvard, Stanford and Columbia Universities. Puneet completed his BA at Harvard University and has a Ph.D. from Stanford University.
A friend of mine introduced me to Puneet because he was kicking off a side project using machine learning to dig into what creativity is through the lens of jazz. Since Puneet is not a musician by training, he was looking for some domain-specific knowledge to inform his experiment, and I really liked his design-oriented thinking. While jazz kicks off our conversation, we went a lot more deeply into the contemporary role of the data scientist in this episode including:
- The discussions that need to happen between users, stakeholders, and subject matter experts so teams get a clear image of the problem that actually needs to be solved.
- Dealing with situations where the question you start with isn’t always the question that is answered in the end.
- When to sacrifice model quality for the sake of user experience and higher user engagement (i.e. the “good enough” approach)
- The role of a data scientist in product design.
Resources and Links:
Quotes from Puneet Batra
"Sometimes, accuracy isn't the most important thing you should be optimizing for; it’s the rest of the package…if you can make that a good process, then I think you're more on the road to making users happy [vs.] trying to live in this idealized world where you never make a mistake at all."
"The question you think you're answering from the beginning probably isn't the one that you're going to stay answering the entire time and you've just got to be flexible around that."
"Even data scientists and engineers should be able to listen with empathy and ask questions. I got a good number of tips from people teaching me how to do things like that. Basically, we ask a question or basically shut up and hear what their answer is."
"I'm not really sure what creativity is. I'm not really sure if machines will ever be creative. A good experiment to try to prove that out is to try to get a machine to be as creative as possible and see where it falls flat."
Comments (0)
To leave or reply to comments, please download free Podbean or
No Comments
To leave or reply to comments,
please download free Podbean App.