

132.5K
Downloads
165
Episodes
Is the value of your enterprise analytics SAAS or AI product not obvious through it’s UI/UX? Got the data and ML models right...but user adoption of your dashboards and UI isn’t what you hoped it would be? While it is easier than ever to create AI and analytics solutions from a technology perspective, do you find as a founder or product leader that getting users to use and buyers to buy seems harder than it should be? If you lead an internal enterprise data team, have you heard that a ”data product” approach can help—but you’re concerned it’s all hype? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I share the stories of leaders who are leveraging product and UX design to make SAAS analytics, AI applications, and internal data products indispensable to their customers. After all, you can’t create business value with data if the humans in the loop can’t or won’t use your solutions. Every 2 weeks, I release interviews with experts and impressive people I’ve met who are doing interesting work at the intersection of enterprise software product management, UX design, AI and analytics—work that you need to hear about and from whom I hope you can borrow strategies. I also occasionally record solo episodes on applying UI/UX design strategies to data products—so you and your team can unlock financial value by making your users’ and customers’ lives better. Hashtag: #ExperiencingData. JOIN MY INSIGHTS LIST FOR 1-PAGE EPISODE SUMMARIES, TRANSCRIPTS, AND FREE UX STRATEGY TIPS https://designingforanalytics.com/ed ABOUT THE HOST, BRIAN T. O’NEILL: https://designingforanalytics.com/bio/
Episodes

Tuesday May 21, 2019
Tuesday May 21, 2019
Paul Mattal is the Director of Network Systems at Akamai, one of the largest content delivery networks in the U.S. Akamai is a major part of the backbone of the internet and on today’s episode, Paul is going to talk about the massive amount of telemetry that comes into Akamai and the various decision support tools his group is in charge of providing to internal customers. On top of the analytics aspect of our chat, we also discussed how Paul is approaching his team’s work being relatively new at Akamai.
Additionally, we covered:
- How does Paul access and use internal customer knowledge to improve the quality of applications they make?
- When to build a custom decision support tool vs. using a BI tool like Tableau?
- How does Akamai measure if their analytics are creating customer value?
- The process Paul uses with the customer to design a new data product MVP
- How Paul decides which of the many analytics applications and services “get love” when resources are constrained
- Paul’s closing advice about taking the time to design and plan before you code
Resources and Links:
Quotes from Today’s Episode
“I would say we have a lot of engagement with [customers] here. People jump to answering questions with data and they’re quick. They know how to do that and they have very good ideas about how to make sure that the approaches they take are backed by data and backed by evidence.” — Paul Mattal
“There’s actually a very mature culture here at Akamai of helping each other. Not necessarily taking on an enormous project if you don’t have the time for it, but opening your door and helping somebody solve a problem, if you have expertise that can help them.” — Paul Mattal
“I’m always curious about feedback cycles because there’s a lot of places that they start with telemetry and data, then they put technology on top of it, they build a bunch of software, and look at releases and outputs as the final part. It’s actually not. It’s the outcomes that come from the stuff we built that matter. If you don’t know what outcomes those look like, then you don’t know if you actually created anything meaningful.” — Brian O’Neill
“We’ve talked a little bit about the MVP approach, which is about doing that minimal amount of work, which may or may not be working code, but you did a minimum amount of stuff to figure out whether or not it’s meeting a need that your customer has. You’re going through some type of observation process to fuel the first thing, asset or output that you create. It’s fueled by some kind of observation or research upfront so that when you go up to bat and take a swing with something real, there’s a better chance of at least a base hit.” — Brian O’Neill
“Pretend to be the new guy for as long as you can. Go ask [about their needs/challenges] again and get to really understand what that person [customer] is experiencing, because I know you’re going to able to meet the need much better.” — Paul Mattal
Comments (0)
To leave or reply to comments, please download free Podbean or
No Comments
To leave or reply to comments,
please download free Podbean App.