127.9K
Downloads
161
Episodes
If you’re a leader tasked with generating business and org. value through ML/AI and analytics, you’ve probably struggled with low user adoption. Making the tech gets easier, but getting users to use, and buyers to buy, remains difficult—but you’ve heard a ”data product” approach can help. Can it? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I offer you a consulting designer’s perspective on why creating ML and analytics outputs isn’t enough to create business and UX outcomes. How can UX design and product management help you create innovative ML/AI and analytical data products? What exactly are data products—and how can data product management help you increase user adoption of ML/analytics—so that stakeholders can finally see the business value of your data? Every 2 weeks, I answer these questions via solo episodes and interviews with innovative chief data officers, data product management leaders, and top UX professionals. Hashtag: #ExperiencingData. PODCAST HOMEPAGE: Get 1-page summaries, text transcripts, and join my Insights mailing list: https://designingforanalytics.com/ed ABOUT THE HOST, BRIAN T. O’NEILL: https://designingforanalytics.com/bio/
Episodes
Tuesday Jul 16, 2019
Tuesday Jul 16, 2019
John Cutler is a Product Evangelist for Amplitude, an analytic platform that helps companies better understand users behavior, helping to grow their businesses. John focuses on user experience and evidence-driven product development by mixing and matching various methodologies to help teams deliver lasting outcomes for their customers. As a former UX researcher at AppFolio, a product manager at Zendesk, Pendo.io, AdKeeper and RichFX, a startup founder, and a product team coach, John has a perspective that spans individual roles, domains, and products.
In today’s episode, John and I discuss how productizing storytelling in analytics applications can be a powerful tool for moving analytics beyond vanity metrics. We also covered the importance of understanding customers’ jobs/tasks, involving cross-disciplinary teams when creating a product/service, and:
- John and Amplitude’s North Star strategy and the (3) measurements they care about when tracking their own customers’ success
- Why John loves the concept of analytics “notebooks” (also a particular feature of Amplitude’s product) vs. the standard dashboard method
- Understanding relationships between metrics through “weekly learning users” who share digestible content
- John’s opinions on involving domain experts and cross-discipline teams to enable products focused on outcomes over features
- Recognizing whether your product/app is about explanatory or exploratory analytics
- How Jazz relates to business – how you don’t know what you don’t know yet
Resources and Links:
Quotes from Today’s Episode
“It’s like you know in your heart you should pair with domain experts and people who know the human problem out there and understand the decisions being made. I think organizationally, there’s a lot of organizational inertia that discourages that, unfortunately, and so you need to fight for it. My advice is to fight for it because you know that that’s important and you know that this is not just a pure data science problem or a pure analytics problem. There’s probably there’s a lot of surrounding information that you need to understand to be able to actually help the business.” – John
“We definitely ‘dogfood’ our product and we also ‘dogfood’ the advice we give our customers.” – John
“You know in your heart you should pair with domain experts and people who know the human problem out there and understand the decisions being made. […] there’s a lot of organizational inertia that discourages that, unfortunately, and so you need to fight for it. I guess my advice is, fight for it, because you know that it is important, and you know that this is not just a pure data science problem or a pure analytics problem.” – John
“It’s very easy to create assets and create code and things that look like progress. They mask themselves as progress and improvement, and they may not actually return any business value or customer value explicitly. We have to consciously know what the outcomes are that we want.” – Brian
“We got to get the right bodies in the room that know the right questions to ask. I can smell when the right questions aren’t being asked, and it’s so powerful” – Brian
“Instead of thinking about what are all the right stats to consider, [I sometimes suggest teams] write in plain English, like in prose format, what would be the value that we could possibly show in the data.’ maybe it can’t even technically be achieved today. But expressing the analytics in words like, ‘you should change this knob to seven instead of nine because we found out X, Y, and Z happened. We also think blah, blah, blah, blah, blah, and here is how we know that, and there’s your recommendation.’ This method is highly prescriptive, but it’s an exercise in thinking about the customer’s experience.” – Brian
Comments (0)
To leave or reply to comments, please download free Podbean or
No Comments
To leave or reply to comments,
please download free Podbean App.