

132.4K
Downloads
165
Episodes
Is the value of your enterprise analytics SAAS or AI product not obvious through it’s UI/UX? Got the data and ML models right...but user adoption of your dashboards and UI isn’t what you hoped it would be? While it is easier than ever to create AI and analytics solutions from a technology perspective, do you find as a founder or product leader that getting users to use and buyers to buy seems harder than it should be? If you lead an internal enterprise data team, have you heard that a ”data product” approach can help—but you’re concerned it’s all hype? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I share the stories of leaders who are leveraging product and UX design to make SAAS analytics, AI applications, and internal data products indispensable to their customers. After all, you can’t create business value with data if the humans in the loop can’t or won’t use your solutions. Every 2 weeks, I release interviews with experts and impressive people I’ve met who are doing interesting work at the intersection of enterprise software product management, UX design, AI and analytics—work that you need to hear about and from whom I hope you can borrow strategies. I also occasionally record solo episodes on applying UI/UX design strategies to data products—so you and your team can unlock financial value by making your users’ and customers’ lives better. Hashtag: #ExperiencingData. JOIN MY INSIGHTS LIST FOR 1-PAGE EPISODE SUMMARIES, TRANSCRIPTS, AND FREE UX STRATEGY TIPS https://designingforanalytics.com/ed ABOUT THE HOST, BRIAN T. O’NEILL: https://designingforanalytics.com/bio/
Episodes

Tuesday Jul 16, 2019
Tuesday Jul 16, 2019
John Cutler is a Product Evangelist for Amplitude, an analytic platform that helps companies better understand users behavior, helping to grow their businesses. John focuses on user experience and evidence-driven product development by mixing and matching various methodologies to help teams deliver lasting outcomes for their customers. As a former UX researcher at AppFolio, a product manager at Zendesk, Pendo.io, AdKeeper and RichFX, a startup founder, and a product team coach, John has a perspective that spans individual roles, domains, and products.
In today’s episode, John and I discuss how productizing storytelling in analytics applications can be a powerful tool for moving analytics beyond vanity metrics. We also covered the importance of understanding customers’ jobs/tasks, involving cross-disciplinary teams when creating a product/service, and:
- John and Amplitude’s North Star strategy and the (3) measurements they care about when tracking their own customers’ success
- Why John loves the concept of analytics “notebooks” (also a particular feature of Amplitude’s product) vs. the standard dashboard method
- Understanding relationships between metrics through “weekly learning users” who share digestible content
- John’s opinions on involving domain experts and cross-discipline teams to enable products focused on outcomes over features
- Recognizing whether your product/app is about explanatory or exploratory analytics
- How Jazz relates to business – how you don’t know what you don’t know yet
Resources and Links:
Quotes from Today’s Episode
“It’s like you know in your heart you should pair with domain experts and people who know the human problem out there and understand the decisions being made. I think organizationally, there’s a lot of organizational inertia that discourages that, unfortunately, and so you need to fight for it. My advice is to fight for it because you know that that’s important and you know that this is not just a pure data science problem or a pure analytics problem. There’s probably there’s a lot of surrounding information that you need to understand to be able to actually help the business.” – John
“We definitely ‘dogfood’ our product and we also ‘dogfood’ the advice we give our customers.” – John
“You know in your heart you should pair with domain experts and people who know the human problem out there and understand the decisions being made. […] there’s a lot of organizational inertia that discourages that, unfortunately, and so you need to fight for it. I guess my advice is, fight for it, because you know that it is important, and you know that this is not just a pure data science problem or a pure analytics problem.” – John
“It’s very easy to create assets and create code and things that look like progress. They mask themselves as progress and improvement, and they may not actually return any business value or customer value explicitly. We have to consciously know what the outcomes are that we want.” – Brian
“We got to get the right bodies in the room that know the right questions to ask. I can smell when the right questions aren’t being asked, and it’s so powerful” – Brian
“Instead of thinking about what are all the right stats to consider, [I sometimes suggest teams] write in plain English, like in prose format, what would be the value that we could possibly show in the data.’ maybe it can’t even technically be achieved today. But expressing the analytics in words like, ‘you should change this knob to seven instead of nine because we found out X, Y, and Z happened. We also think blah, blah, blah, blah, blah, and here is how we know that, and there’s your recommendation.’ This method is highly prescriptive, but it’s an exercise in thinking about the customer’s experience.” – Brian
Comments (0)
To leave or reply to comments, please download free Podbean or
No Comments
To leave or reply to comments,
please download free Podbean App.