127.9K
Downloads
161
Episodes
If you’re a leader tasked with generating business and org. value through ML/AI and analytics, you’ve probably struggled with low user adoption. Making the tech gets easier, but getting users to use, and buyers to buy, remains difficult—but you’ve heard a ”data product” approach can help. Can it? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I offer you a consulting designer’s perspective on why creating ML and analytics outputs isn’t enough to create business and UX outcomes. How can UX design and product management help you create innovative ML/AI and analytical data products? What exactly are data products—and how can data product management help you increase user adoption of ML/analytics—so that stakeholders can finally see the business value of your data? Every 2 weeks, I answer these questions via solo episodes and interviews with innovative chief data officers, data product management leaders, and top UX professionals. Hashtag: #ExperiencingData. PODCAST HOMEPAGE: Get 1-page summaries, text transcripts, and join my Insights mailing list: https://designingforanalytics.com/ed ABOUT THE HOST, BRIAN T. O’NEILL: https://designingforanalytics.com/bio/
Episodes
Tuesday Sep 10, 2019
Tuesday Sep 10, 2019
John Purcell has more than 20 years of experience in the technology world. Currently, he’s VP of Products at CloudHealth, a company that helps organizations manage their increasingly complex cloud infrastructure effectively. Prior to this role, he held the same position at SmartBear Software, makers of application performance monitoring solutions. He’s also worn several hats at companies like LogMeIn and Red Bend Software.
In today’s episode, John and I discuss how companies are moving more and more workloads to the cloud and how John and his team at CloudHealth builds a platform that makes it easy for all users—even non-technical ones—to analyze and manage data in the cloud and control their financial spending. In addition to exploring the overall complexity of using analytics to inform the management of cloud environments, we also covered:
- How CloudHealth designs for multiple personas from the financial analyst to the DevOps operator when building solutions into the product
- Why John has “maniacal point of view” and “religion” around design and UX and how they have the power to disrupt a market
- How design helps turn otherwise complex data sets that might require an advanced degree to understand into useful decision support
- How data can lead to action, and how CloudHealth balances automation vs. manual action for its customers using data to make decisions
- Why John believes user experience is a critical voice at the table during the very earliest stages of any new analytics/data initiative
Resources and Links
Twitter: @PurcellOutdoors
Quotes from Today’s Episode
“I think that’s probably where the biggest point of complexity and the biggest point of challenge is for us: trying to make sure that the platform is flexible enough to be able to inject datasets we’ve never seen before and to be able to analyze and find correlations between unknown datasets that we may not have a high degree of familiarity with—so that we can generate insight that’s actionable, but deliver it in a way that’s [easy for anyone to understand].” — John
“My core philosophy is that you need UX at the table early and at every step along the way as you’re contemplating product delivery, and I mean all the way upstream at the strategic phase, at the identification of what you want to go tackle next including product strategy, pain identification, persona awareness, and who are we building for—all the way through solving the problem, what should the product be capable of, and user validation.” — John
“in the cloud, we’re just at the very early stages of [automation based on analytics] from a pure DevOps point of view. We’re still in the world of show me your math. Show me why this is the recommendation you’re making.” — John
“When making decisions using data, some IT people don’t like the system taking action without them being involved because they don’t trust that any product would be smart enough to make all the right decisions, and they don’t want applications going down.” — Brian
“I think the distinction you made between what I would call user interface design, which is the surface layer, buttons, fonts, colors, all that stuff often gets conflated in the world of analytics as being, quote ‘design.’ And as I think our audience is hearing from John here, is that it [design] goes much beyond that. It can get into something like, ‘how do you design a great experience around API documentation? Where’s the demo code? How do I run the demo?’ All of that can definitely be designed as well.” — Brian
“I hear frequently in my conversations with clients and people in the industry that there are a lot of data scientists who just want to use the latest models, and they want to work on model quality and predictive accurateness, etc. But they’re not thinking about how someone is going to use this model to make a decision, and whether will there be some business value created at the end.” — Brian
Comments (0)
To leave or reply to comments, please download free Podbean or
No Comments
To leave or reply to comments,
please download free Podbean App.