

132.4K
Downloads
165
Episodes
Is the value of your enterprise analytics SAAS or AI product not obvious through it’s UI/UX? Got the data and ML models right...but user adoption of your dashboards and UI isn’t what you hoped it would be? While it is easier than ever to create AI and analytics solutions from a technology perspective, do you find as a founder or product leader that getting users to use and buyers to buy seems harder than it should be? If you lead an internal enterprise data team, have you heard that a ”data product” approach can help—but you’re concerned it’s all hype? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I share the stories of leaders who are leveraging product and UX design to make SAAS analytics, AI applications, and internal data products indispensable to their customers. After all, you can’t create business value with data if the humans in the loop can’t or won’t use your solutions. Every 2 weeks, I release interviews with experts and impressive people I’ve met who are doing interesting work at the intersection of enterprise software product management, UX design, AI and analytics—work that you need to hear about and from whom I hope you can borrow strategies. I also occasionally record solo episodes on applying UI/UX design strategies to data products—so you and your team can unlock financial value by making your users’ and customers’ lives better. Hashtag: #ExperiencingData. JOIN MY INSIGHTS LIST FOR 1-PAGE EPISODE SUMMARIES, TRANSCRIPTS, AND FREE UX STRATEGY TIPS https://designingforanalytics.com/ed ABOUT THE HOST, BRIAN T. O’NEILL: https://designingforanalytics.com/bio/
Episodes

Tuesday Sep 24, 2019
Tuesday Sep 24, 2019
Scott Friesen’s transformation into a data analytics professional wasn’t exactly linear. After graduating with a biology degree and becoming a pre-med student, he switched gears and managed artists in the music industry. After that, he worked at Best Buy, eventually becoming their Senior Director of Analytics for the company’s consumer insights unit. Today, Scott is the SVP of Strategic Analytics at Echo Global Logistics, a provider of technology-enabled transportation and supply chain management services. He also advises for the International Institute for Analytics.
In this episode, Scott shares what he thinks data scientists and analytics leaders need to do to become a trustworthy and indispensable part of an organization. Scott and I both believe that designing good decision support applications and creating useful data science solutions involve a lot more than technical knowledge. We cover:
- Scott’s trust equation, why it’s critical for analytics professionals, and how he uses it to push transformation across the organization
- Scott’s “jazz” vs “classical” approach to creating solutions
- How to develop intimacy and trust with your business partners (e.g., IT) and executives, and the non-technical skills analytics teams need to develop to be successful
- Scott’s opinion about design thinking and analytics solutions
- How to talk about risk to business stakeholders when deploying data science solutions
- How the success of Scott’s new pricing model was impeded by something that had nothing to do with the data—and how he addressed it
- Scott’s take on the emerging “analytics translator” role
- The two key steps to career success—and volcanos
Resources and Links
Quotes from Today's Episode
“You might think it is more like classical music, but truly great analytics are more like jazz. ” — Scott
“If I'm going to introduce change to an organization, then I'm going to introduce perceived risk. And so the way for me to drive positive change—the way for me to drive adding value to the organizations that I'm a part of—is the ability to create enough credibility and intimacy that I can get away with introducing change that benefits the organization.” — Scott
“I categorize the analytic pursuit into three fundamental activities: The first is to observe, the second is to relate, and the third is to predict. ” — Scott
“It's not enough to just understand the technology part and how to create great models. You can get all that stuff right and still fail in the last mile to deliver value.” — Brian
“I tend to think of this is terms of what you called ‘intimacy.’ I don’t know if you equate that to empathy, which is really understanding the thing you are talking about from the perspective of the other person. When we do UX research, the questions themselves are what form this intimacy. An easy way to do that is by asking open-ended questions that require open-ended answers to get that person to open up to you. ” — Brian
Comments (0)
To leave or reply to comments, please download free Podbean or
No Comments
To leave or reply to comments,
please download free Podbean App.