127.9K
Downloads
161
Episodes
If you’re a leader tasked with generating business and org. value through ML/AI and analytics, you’ve probably struggled with low user adoption. Making the tech gets easier, but getting users to use, and buyers to buy, remains difficult—but you’ve heard a ”data product” approach can help. Can it? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I offer you a consulting designer’s perspective on why creating ML and analytics outputs isn’t enough to create business and UX outcomes. How can UX design and product management help you create innovative ML/AI and analytical data products? What exactly are data products—and how can data product management help you increase user adoption of ML/analytics—so that stakeholders can finally see the business value of your data? Every 2 weeks, I answer these questions via solo episodes and interviews with innovative chief data officers, data product management leaders, and top UX professionals. Hashtag: #ExperiencingData. PODCAST HOMEPAGE: Get 1-page summaries, text transcripts, and join my Insights mailing list: https://designingforanalytics.com/ed ABOUT THE HOST, BRIAN T. O’NEILL: https://designingforanalytics.com/bio/
Episodes
Tuesday Nov 19, 2019
Tuesday Nov 19, 2019
Tom Davenport has literally written the book on analytics. Actually, several of them, to be precise. Over the course of his career, Tom has established himself as the authority on analytics and how their role in the modern organization has evolved in recent years. Tom is a distinguished professor at Babson College, a research fellow at the MIT Initiative on the Digital Economy, and a senior advisor at Deloitte Analytics. The discussion was timely as Tom had just written an article about a financial services company that had trained its employees on human-centered design so that they could ensure any use of AI would be customer-driven and valuable. We discussed their journey and:
- Why on a scale of 1-10, the field of analytics has only gone from a one to about a two in ten years time
- Why so few analytics projects actually make it into production
- Examples of companies who are using design to turn data into useful applications of AI, decision support and product improvements for customers
- Why shadow IT shouldn’t be a bad word
- AI moonshot projects vs. MVPs and how they relate
- Why journey mapping is incredibly useful and important in analytics and data science work
- How human-centered design and ethnography is the tough work that’s required to turn data into decision support
- Tom’s new book and his thoughts on the future of data science and analytics
Resources and Links:
- Website: Tomdavenport.com
- LinkedIn: Tom Davenport
- Twitter: @tdav
- Designingforanalytics.com/seminar
- Designingforanalytics.com
Quotes from Today’s Episode
“If you survey organizations and ask them, ‘Does your company have a data-driven culture?’ they almost always say no. Surveys even show a kind of negative movement over recent years in that regard. And it's because nobody really addresses that issue. They only address the technology side.” — Tom Eventually, I think some fraction of [AI and analytics solutions] get used and are moderately effective, but there is not nearly enough focus on this. A lot of analytics people think their job is to create models, and whether anybody uses it or not is not their responsibility...We don't have enough people who make it their jobs to do that sort of thing. —Tom I think we need this new specialist, like a data ethnographer, who could sort of understand much more how people interact with data and applications, and how many ways they get screwed up.—Tom I don't know how you inculcate it or teach it in schools, but I think we all need curiosity about how technology can make us work more effectively. It clearly takes some investment, and time, and effort to do it.— Tom TD Wealth’s goal was to get [its employees] to experientially understand what data, analytics, technology, and AI are all about, and then to think a lot about how it related to their customers. So they had a lot of time spent with customers, understanding what their needs were to make that match with AI. [...] Most organizations only address the technology and the data sides, so I thought this was very refreshing.—Tom “So we all want to do stuff with data. But as you know, there are a lot of poor solutions that get provided from technical people back to business stakeholders. Sometimes they fall on deaf ears. They don't get used.” — Brian “I actually had a consultant I was talking to recently who said you know the average VP/director or CDO/CAO has about two years now to show results, and this gravy train may be slowing down a little bit.“ — Brian “One of the things that I see in the kind of the data science and analytics community is almost this expectation that ‘I will be handed a well-crafted and well-defined problem that is a data problem, and then I will go off and solve it using my technical skills, and then provide you with an answer.’” — Brian
Comments (0)
To leave or reply to comments, please download free Podbean or
No Comments
To leave or reply to comments,
please download free Podbean App.