126.7K
Downloads
160
Episodes
If you’re a leader tasked with generating business and org. value through ML/AI and analytics, you’ve probably struggled with low user adoption. Making the tech gets easier, but getting users to use, and buyers to buy, remains difficult—but you’ve heard a ”data product” approach can help. Can it? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I offer you a consulting designer’s perspective on why creating ML and analytics outputs isn’t enough to create business and UX outcomes. How can UX design and product management help you create innovative ML/AI and analytical data products? What exactly are data products—and how can data product management help you increase user adoption of ML/analytics—so that stakeholders can finally see the business value of your data? Every 2 weeks, I answer these questions via solo episodes and interviews with innovative chief data officers, data product management leaders, and top UX professionals. Hashtag: #ExperiencingData. PODCAST HOMEPAGE: Get 1-page summaries, text transcripts, and join my Insights mailing list: https://designingforanalytics.com/ed ABOUT THE HOST, BRIAN T. O’NEILL: https://designingforanalytics.com/bio/
Episodes
Thursday Nov 14, 2024
Thursday Nov 14, 2024
Jeremy Forman joins us to open up about the hurdles– and successes that come with building data products for pharmaceutical companies. Although he’s new to Pfizer, Jeremy has years of experience leading data teams at organizations like Seagen and the Bill and Melinda Gates Foundation. He currently serves in a more specialized role in Pfizer’s R&D department, building AI and analytical data products for scientists and researchers. .
Jeremy gave us a good luck at his team makeup, and in particular, how his data product analysts and UX designers work with pharmaceutical scientists and domain experts to build data-driven solutions.. We talked a good deal about how and when UX design plays a role in Pfizer’s data products, including a GenAI-based application they recently launched internally.
Highlights/ Skip to:
- (1:26) Jeremy's background in analytics and transition into working for Pfizer
- (2:42) Building an effective AI analytics and data team for pharma R&D
- (5:20) How Pfizer finds data products managers
- (8:03) Jeremy's philosophy behind building data products and how he adapts it to Pfizer
- (12:32) The moment Jeremy heard a Pfizer end-user use product management research language and why it mattered
- (13:55) How Jeremy's technical team members work with UX designers
- (18:00) The challenges that come with producing data products in the medical field
- (23:02) How to justify spending the budget on UX design for data products
- (24:59) The results we've seen having UX design work on AI / GenAI products
- (25:53) What Jeremy learned at the Bill & Melinda Gates Foundation with regards to UX and its impact on him now
- (28:22) Managing the "rough dance" between data science and UX
- (33:22) Breaking down Jeremy's GenAI application demo from CDIOQ
- (36:02) What would Jeremy prioritize right now if his team got additional funding
- (38:48) Advice Jeremy would have given himself 10 years ago
- (40:46) Where you can find more from Jeremy
Quotes from Today’s Episode
- “We have stream-aligned squads focused on specific areas such as regulatory, safety and quality, or oncology research. That’s so we can create functional career pathing and limit context switching and fragmentation. They can become experts in their particular area and build a culture within that small team. It’s difficult to build good [pharma] data products. You need to understand the domain you’re supporting. You can’t take somebody with a financial background and put them in an Omics situation. It just doesn’t work. And we have a lot of the scars, and the failures to prove that.” - Jeremy Forman (4:12)
- “You have to have the product mindset to deliver the value and the promise of AI data analytics. I think small, independent, autonomous, empowered squads with a product leader is the only way that you can iterate fast enough with [pharma data products].” - Jeremy Forman (8:46)
- “The biggest challenge is when we say data products. It means a lot of different things to a lot of different people, and it’s difficult to articulate what a data product is. Is it a view in a database? Is it a table? Is it a query? We’re all talking about it in different terms, and nobody’s actually delivering data products.” - Jeremy Forman (10:53)
- “I think when we’re talking about [data products] there’s some type of data asset that has value to an end-user, versus a report or an algorithm. I think it’s even hard for UX people to really understand how to think about an actual data product. I think it’s hard for people to conceptualize, how do we do design around that? It’s one of the areas I think I’ve seen the biggest challenges, and I think some of the areas we’ve learned the most. If you build a data product, it’s not accurate, and people are getting results that are incomplete… people will abandon it quickly.” - Jeremy Forman (15:56)
- “ I think that UX design and AI development or data science work is a magical partnership, but they often don’t know how to work with each other. That’s been a challenge, but I think investing in that has been critical to us. Even though we’ve had struggles… I think we’ve also done a good job of understanding the [user] experience and impact that we want to have. The prototype we shared [at CDIOQ] is driven by user experience and trying to get information in the hands of the research organization to understand some portfolio types of decisions that have been made in the past. And it’s been really successful.” - Jeremy Forman (24:59)
- “If you’re having technology conversations with your business users, and you’re focused only the technology output, you’re just building reports. [After adopting If we’re having technology conversations with our business users and only focused on the technology output, we’re just building reports. [After we adopted a human-centered design approach], it was talking [with end-users] about outcomes, value, and adoption. Having that resource transformed the conversation, and I felt like our quality went up. I felt like our output went down, but our impact went up. [End-users] loved the tools, and that wasn’t what was happening before… I credit a lot of that to the human-centered design team.” - Jeremy Forman (26:39)
- “When you’re thinking about automation through machine learning or building algorithms for [clinical trial analysis], it becomes a harder dance between data scientists and human-centered design. I think there’s a lack of appreciation and understanding of what UX can do. Human-centered design is an empathy-driven understanding of users’ experience, their work, their workflow, and the challenges they have. I don’t think there’s an appreciation of that skill set.” - Jeremy Forman (29:20)
- “Are people excited about it? Is there value? Are we hearing positive things? Do they want us to continue? That’s really how I’ve been judging success. Is it saving people time, and do they want to continue to use it? They want to continue to invest in it. They want to take their time as end-users, to help with testing, helping to refine it. Those are the indicators. We’re not generating revenue, so what does the adoption look like? Are people excited about it? Are they telling friends? Do they want more? When I hear that the ten people [who were initial users] are happy and that they think it should be rolled out to the whole broader audience, I think that’s a good sign.” - Jeremy Forman (35:19)
Links Referenced
LinkedIn: https://www.linkedin.com/in/jeremy-forman-6b982710/
Comments (0)
To leave or reply to comments, please download free Podbean or
No Comments
To leave or reply to comments,
please download free Podbean App.