127.8K
Downloads
161
Episodes
If you’re a leader tasked with generating business and org. value through ML/AI and analytics, you’ve probably struggled with low user adoption. Making the tech gets easier, but getting users to use, and buyers to buy, remains difficult—but you’ve heard a ”data product” approach can help. Can it? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I offer you a consulting designer’s perspective on why creating ML and analytics outputs isn’t enough to create business and UX outcomes. How can UX design and product management help you create innovative ML/AI and analytical data products? What exactly are data products—and how can data product management help you increase user adoption of ML/analytics—so that stakeholders can finally see the business value of your data? Every 2 weeks, I answer these questions via solo episodes and interviews with innovative chief data officers, data product management leaders, and top UX professionals. Hashtag: #ExperiencingData. PODCAST HOMEPAGE: Get 1-page summaries, text transcripts, and join my Insights mailing list: https://designingforanalytics.com/ed ABOUT THE HOST, BRIAN T. O’NEILL: https://designingforanalytics.com/bio/
Episodes
Tuesday May 18, 2021
Tuesday May 18, 2021
I once saw a discussion on LinkedIn about a fraud detection model that had been built but never used. The model worked — it was expensive — but it just simply didn’t get used because the humans in the loop were not incentivized to use it.
It was on this very thread that I first met Salesforce Director of Product Management Pavan Tuvu, who chimed in on the thread about a similar experience he went through. When I heard about his experience, I asked him if he would share it with you and he agreed. So, today on the Experiencing Data podcast, I’m excited to have Pavan on to talk about some lessons he learned while designing ad-spend software that utilized advanced analytics — and the role of the humans in the loop. We discussed:
- Pavan's role as Director of Product Management at Salesforce and how he works to make data easier to use for teams. (0:40)
- Pavan's work protecting large-dollar advertising accounts from bad actors by designing a ML system that predicts and caps ad spending. (6:10)
- 'Human override of the machine': How Pavan addressed concerns that its advertising security system would incorrectly police legitimate large-dollar ad spends. (12:22)
- How the advertising security model Pavan worked on learned from human feedback. (24:49)
- How leading with "why" when designing data products will lead to a better understanding of what customers need to solve. (29:05)
Comments (0)
To leave or reply to comments, please download free Podbean or
No Comments
To leave or reply to comments,
please download free Podbean App.